Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 129
Filtrar
1.
Am J Hematol ; 99(1): 99-112, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37929634

RESUMO

Human erythropoiesis is a complex process leading to the production of 2.5 million red blood cells per second. Following commitment of hematopoietic stem cells to the erythroid lineage, this process can be divided into three distinct stages: erythroid progenitor differentiation, terminal erythropoiesis, and reticulocyte maturation. We recently resolved the heterogeneity of erythroid progenitors into four different subpopulations termed EP1-EP4. Here, we characterized the growth factor(s) responsiveness of these four progenitor populations in terms of proliferation and differentiation. Using mass spectrometry-based proteomics on sorted erythroid progenitors, we quantified the absolute expression of ~5500 proteins from EP1 to EP4. Further functional analyses highlighted dynamic changes in cell cycle in these populations with an acceleration of the cell cycle during erythroid progenitor differentiation. The finding that E2F4 expression was increased from EP1 to EP4 is consistent with the noted changes in cell cycle. Finally, our proteomic data suggest that the protein machinery necessary for both oxidative phosphorylation and glycolysis is present in these progenitor cells. Together, our data provide comprehensive insights into growth factor-dependence of erythroid progenitor proliferation and the proteome of four distinct populations of human erythroid progenitors which will be a useful framework for the study of erythroid disorders.


Assuntos
Células-Tronco Hematopoéticas , Proteômica , Humanos , Diferenciação Celular , Ciclo Celular , Eritropoese , Redes e Vias Metabólicas , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Células Precursoras Eritroides
2.
Cell Rep Med ; 4(11): 101259, 2023 11 21.
Artigo em Inglês | MEDLINE | ID: mdl-37913777

RESUMO

Umbilical cord blood transplantation is a life-saving treatment for malignant and non-malignant hematologic disorders. It remains unclear how long cryopreserved units remain functional, and the length of cryopreservation is often used as a criterion to exclude older units. We demonstrate that long-term cryopreserved cord blood retains similar numbers of hematopoietic stem and progenitor cells compared with fresh and recently cryopreserved cord blood units. Long-term cryopreserved units contain highly functional cells, yielding robust engraftment in mouse transplantation models. We also leverage differences between units to examine gene programs associated with better engraftment. Transcriptomic analyses reveal that gene programs associated with lineage determination and oxidative stress are enriched in high engrafting cord blood, revealing potential molecular markers to be used as potency markers for cord blood unit selection regardless of length of cryopreservation. In summary, cord blood units cryopreserved for extended periods retain engrafting potential and can potentially be used for patient treatment.


Assuntos
Transplante de Células-Tronco Hematopoéticas , Células-Tronco Hematopoéticas , Animais , Camundongos , Humanos , Sangue Fetal , Criopreservação
3.
Viruses ; 15(4)2023 04 19.
Artigo em Inglês | MEDLINE | ID: mdl-37112982

RESUMO

The unprecedented pandemic of COVID-19, caused by a novel coronavirus, SARS-CoV-2, and its highly transmissible variants, led to massive human suffering, death, and economic devastation worldwide. Recently, antibody-evasive SARS-CoV-2 subvariants, BQ and XBB, have been reported. Therefore, the continued development of novel drugs with pan-coronavirus inhibition is critical to treat and prevent infection of COVID-19 and any new pandemics that may emerge. We report the discovery of several highly potent small-molecule inhibitors. One of which, NBCoV63, showed low nM potency against SARS-CoV-2 (IC50: 55 nM), SARS-CoV-1 (IC50: 59 nM), and MERS-CoV (IC50: 75 nM) in pseudovirus-based assays with excellent selectivity indices (SI > 900), suggesting its pan-coronavirus inhibition. NBCoV63 showed equally effective antiviral potency against SARS-CoV-2 mutant (D614G) and several variants of concerns (VOCs) such as B.1.617.2 (Delta), B.1.1.529/BA.1 and BA.4/BA.5 (Omicron), and K417T/E484K/N501Y (Gamma). NBCoV63 also showed similar efficacy profiles to Remdesivir against authentic SARS-CoV-2 (Hong Kong strain) and two of its variants (Delta and Omicron), SARS-CoV-1, and MERS-CoV by plaque reduction in Calu-3 cells. Additionally, we show that NBCoV63 inhibits virus-mediated cell-to-cell fusion in a dose-dependent manner. Furthermore, the absorption, distribution, metabolism, and excretion (ADME) data of NBCoV63 demonstrated drug-like properties.


Assuntos
COVID-19 , Coronavírus da Síndrome Respiratória do Oriente Médio , Humanos , SARS-CoV-2 , Antirretrovirais , Glicoproteína da Espícula de Coronavírus/genética
4.
Biophys J ; 120(17): 3588-3599, 2021 09 07.
Artigo em Inglês | MEDLINE | ID: mdl-34352252

RESUMO

Spectrin tetramers of the membranes of enucleated mammalian erythrocytes play a critical role in red blood cell survival in circulation. One of the spectrins, αI, emerged in mammals with enucleated red cells after duplication of the ancestral α-spectrin gene common to all animals. The neofunctionalized αI-spectrin has moderate affinity for ßI-spectrin, whereas αII-spectrin, expressed in nonerythroid cells, retains ancestral characteristics and has a 10-fold higher affinity for ßI-spectrin. It has been hypothesized that this adaptation allows for rapid make and break of tetramers to accommodate membrane deformation. We have tested this hypothesis by generating mice with high-affinity spectrin tetramers formed by exchanging the site of tetramer formation in αI-spectrin (segments R0 and R1) for that of αII-spectrin. Erythrocytes with αIIßI presented normal hematologic parameters yet showed increased thermostability, and their membranes were significantly less deformable; under low shear forces, they displayed tumbling behavior rather than tank treading. The membrane skeleton is more stable with αIIßI and shows significantly less remodeling under deformation than red cell membranes of wild-type mice. These data demonstrate that spectrin tetramers undergo remodeling in intact erythrocytes and that this is required for the normal deformability of the erythrocyte membrane. We conclude that αI-spectrin represents evolutionary optimization of tetramer formation: neither higher-affinity tetramers (as shown here) nor lower affinity (as seen in hemolytic disease) can support the membrane properties required for effective tissue oxygenation in circulation.


Assuntos
Deformação Eritrocítica , Espectrina , Animais , Evolução Biológica , Membrana Eritrocítica , Eritrócitos , Camundongos
5.
BMC Infect Dis ; 21(1): 871, 2021 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-34433423

RESUMO

BACKGROUND: Epidemic projections and public health policies addressing Coronavirus disease (COVID)-19 have been implemented without data reporting on the seroconversion of the population since scalable antibody testing has only recently become available. METHODS: We measured the percentage of severe acute respiratory syndrome- Coronavirus-2 (SARS-CoV-2) seropositive individuals from 2008 blood donors drawn in the state of Rhode Island (RI). We utilized multiple antibody testing platforms, including lateral flow immunoassays (LFAs), enzyme-linked immunosorbent assays (ELISAs) and high throughput serological assays (HTSAs). To estimate seroprevalence, we utilized the Bayesian statistical method to adjust for sensitivity and specificity of the commercial tests used. RESULTS: We report than an estimated seropositive rate of RI blood donors of approximately 0.6% existed in April-May of 2020. Daily new case rates peaked in RI in late April 2020. We found HTSAs and LFAs were positively correlated with ELISA assays to detect antibodies specific to SARS-CoV-2 in blood donors. CONCLUSIONS: These data imply that seroconversion, and thus infection, is likely not widespread within this population. We conclude that IgG LFAs and HTSAs are suitable to conduct seroprevalence assays in random populations. More studies will be needed using validated serological tests to improve the precision and report the kinetic progression of seroprevalence estimates.


Assuntos
Anticorpos Antivirais/sangue , Doadores de Sangue , COVID-19/epidemiologia , SARS-CoV-2 , Teorema de Bayes , Humanos , Rhode Island/epidemiologia , Estudos Soroepidemiológicos
6.
Blood ; 138(17): 1615-1627, 2021 10 28.
Artigo em Inglês | MEDLINE | ID: mdl-34036344

RESUMO

Histone deacetylases (HDACs) are a group of enzymes that catalyze the removal of acetyl groups from histone and nonhistone proteins. HDACs have been shown to have diverse functions in a wide range of biological processes. However, their roles in mammalian erythropoiesis remain to be fully defined. This study showed that, of the 11 classic HDAC family members, 6 (HDAC1, -2, -3, and HDAC5, -6, -7) are expressed in human erythroid cells, with HDAC5 most significantly upregulated during terminal erythroid differentiation. Knockdown of HDAC5 by either short hairpin RNA or small interfering RNA in human CD34+ cells followed by erythroid cell culture led to increased apoptosis, decreased chromatin condensation, and impaired enucleation of erythroblasts. Biochemical analyses revealed that HDAC5 deficiency resulted in activation of p53 in association with increased acetylation of p53. Furthermore, although acetylation of histone 4 (H4) is decreased during normal terminal erythroid differentiation, HDAC5 deficiency led to increased acetylation of H4 (K12) in late-stage erythroblasts. This increased acetylation was accompanied by decreased chromatin condensation, implying a role for H4 (K12) deacetylation in chromatin condensation. ATAC-seq and RNA sequencing analyses revealed that HDAC5 knockdown leads to increased chromatin accessibility genome-wide and global changes in gene expression. Moreover, pharmacological inhibition of HDAC5 by the inhibitor LMK235 also led to increased H4 acetylation, impaired chromatin condensation, and enucleation. Taken together, our findings have uncovered previously unrecognized roles and molecular mechanisms of action for HDAC5 in human erythropoiesis. These results may provide insights into understanding the anemia associated with HDAC inhibitor treatment.


Assuntos
Células Eritroides/citologia , Eritropoese , Histona Desacetilases/genética , Apoptose , Eritroblastos/citologia , Eritroblastos/metabolismo , Células Eritroides/metabolismo , Humanos , Interferência de RNA , RNA Interferente Pequeno/genética , Regulação para Cima
7.
Am J Hematol ; 96(9): 1064-1076, 2021 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-34021930

RESUMO

Identification of stage-specific erythroid cells is critical for studies of normal and disordered human erythropoiesis. While immunophenotypic strategies have previously been developed to identify cells at each stage of terminal erythroid differentiation, erythroid progenitors are currently defined very broadly. Refined strategies to identify and characterize BFU-E and CFU-E subsets are critically needed. To address this unmet need, a flow cytometry-based technique was developed that combines the established surface markers CD34 and CD36 with CD117, CD71, and CD105. This combination allowed for the separation of erythroid progenitor cells into four discrete populations along a continuum of progressive maturation, with increasing cell size and decreasing nuclear/cytoplasmic ratio, proliferative capacity and stem cell factor responsiveness. This strategy was validated in uncultured, primary erythroid cells isolated from bone marrow of healthy individuals. Functional colony assays of these progenitor populations revealed enrichment of BFU-E only in the earliest population, transitioning to cells yielding BFU-E and CFU-E, then CFU-E only. Utilizing CD34/CD105 and GPA/CD105 profiles, all four progenitor stages and all five stages of terminal erythroid differentiation could be identified. Applying this immunophenotyping strategy to primary bone marrow cells from patients with myelodysplastic syndrome, identified defects in erythroid progenitors and in terminal erythroid differentiation. This novel immunophenotyping technique will be a valuable tool for studies of normal and perturbed human erythropoiesis. It will allow for the discovery of stage-specific molecular and functional insights into normal erythropoiesis as well as for identification and characterization of stage-specific defects in inherited and acquired disorders of erythropoiesis.


Assuntos
Células Eritroides/citologia , Células Precursoras Eritroides/citologia , Eritropoese , Antígenos CD/análise , Antígenos CD34/análise , Células da Medula Óssea/citologia , Células Cultivadas , Endoglina/análise , Citometria de Fluxo/métodos , Humanos , Imunofenotipagem/métodos
8.
PLoS One ; 16(4): e0250319, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33909646

RESUMO

Projections of the stage of the Severe Acute Respiratory Syndrome-Coronavirus-2 (SARS-CoV-2) pandemic and local, regional and national public health policies to limit coronavirus spread as well as "reopen" cities and states, are best informed by serum neutralizing antibody titers measured by reproducible, high throughput, and statically credible antibody (Ab) assays. To date, a myriad of Ab tests, both available and FDA authorized for emergency, has led to confusion rather than insight per se. The present study reports the results of a rapid, point-in-time 1,000-person cohort study using serial blood donors in the New York City metropolitan area (NYC) using multiple serological tests, including enzyme-linked immunosorbent assays (ELISAs) and high throughput serological assays (HTSAs). These were then tested and associated with assays for neutralizing Ab (NAb). Of the 1,000 NYC blood donor samples in late June and early July 2020, 12.1% and 10.9% were seropositive using the Ortho Total Ig and the Abbott IgG HTSA assays, respectively. These serological assays correlated with neutralization activity specific to SARS-CoV-2. The data reported herein suggest that seroconversion in this population occurred in approximately 1 in 8 blood donors from the beginning of the pandemic in NYC (considered March 1, 2020). These findings deviate with an earlier seroprevalence study in NYC showing 13.7% positivity. Collectively however, these data demonstrate that a low number of individuals have serologic evidence of infection during this "first wave" and suggest that the notion of "herd immunity" at rates of ~60% or higher are not near. Furthermore, the data presented herein show that the nature of the Ab-based immunity is not invariably associated with the development of NAb. While the blood donor population may not mimic precisely the NYC population as a whole, rapid assessment of seroprevalence in this cohort and serial reassessment could aid public health decision making.


Assuntos
COVID-19/epidemiologia , SARS-CoV-2/imunologia , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Anticorpos Neutralizantes/sangue , Anticorpos Antivirais/imunologia , Doadores de Sangue , COVID-19/imunologia , Estudos de Coortes , Ensaio de Imunoadsorção Enzimática/métodos , Feminino , Humanos , Imunoglobulina G/sangue , Masculino , Pessoa de Meia-Idade , Cidade de Nova Iorque/epidemiologia , SARS-CoV-2/patogenicidade , Sensibilidade e Especificidade , Soroconversão/fisiologia , Estudos Soroepidemiológicos , Testes Sorológicos/métodos , Glicoproteína da Espícula de Coronavírus/imunologia
10.
Blood Adv ; 5(1): 16-25, 2021 01 12.
Artigo em Inglês | MEDLINE | ID: mdl-33570621

RESUMO

Liver, spleen, and bone marrow are 3 key erythropoietic tissues in mammals. In the mouse, the liver is the predominant site of erythropoiesis during fetal development, the spleen responds to stress erythropoiesis, and the bone marrow is involved in maintaining homeostatic erythropoiesis in adults. However, the dynamic changes and respective contributions of the erythropoietic activity of these tissues from birth to adulthood are incompletely defined. Using C57BL/6 mice, we systematically examined the age-dependent changes in liver, spleen, and bone marrow erythropoiesis following birth. In addition to bone marrow, the liver and spleen of newborn mice sustain an active erythropoietic activity that is gradually lost during first few weeks of life. While the erythropoietic activity of the liver is lost 1 week after birth, that of the spleen is maintained for 7 weeks until the erythropoietic activity of the bone marrow is sufficient to sustain steady-state adult erythropoiesis. Measurement of the red cell parameters demonstrates that these postnatal dynamic changes are reflected by varying indices of circulating red cells. While the red cell numbers, hemoglobin concentration, and hematocrit progressively increase after birth and reach steady-state levels by week 7, reticulocyte counts decrease during this time period. Mean cell volume and mean cell hemoglobin progressively decrease and reach steady state by week 3. Our findings provide comprehensive insights into developmental changes of murine erythropoiesis postnatally and have significant implications for the appropriate interpretation of findings from the variety of murine models used in the study of normal and disordered erythropoiesis.


Assuntos
Anemia , Eritropoese , Animais , Medula Óssea , Modelos Animais de Doenças , Camundongos , Camundongos Endogâmicos C57BL
11.
Viruses ; 14(1)2021 12 31.
Artigo em Inglês | MEDLINE | ID: mdl-35062273

RESUMO

We report the discovery of several highly potent small molecules with low-nM potency against severe acute respiratory syndrome coronavirus (SARS-CoV; lowest half-maximal inhibitory concentration (IC50: 13 nM), SARS-CoV-2 (IC50: 23 nM), and Middle East respiratory syndrome coronavirus (MERS-CoV; IC50: 76 nM) in pseudovirus-based assays with excellent selectivity index (SI) values (>5000), demonstrating potential pan-coronavirus inhibitory activities. Some compounds showed 100% inhibition against the cytopathic effects (CPE; IC100) of an authentic SARS-CoV-2 (US_WA-1/2020) variant at 1.25 µM. The most active inhibitors also potently inhibited variants of concern (VOCs), including the UK (B.1.1.7) and South African (B.1.351) variants and the Delta variant (B.1.617.2) originally identified in India in pseudovirus-based assay. Surface plasmon resonance (SPR) analysis with one potent inhibitor confirmed that it binds to the prefusion SARS-CoV-2 spike protein trimer. These small-molecule inhibitors prevented virus-mediated cell-cell fusion. The absorption, distribution, metabolism, and excretion (ADME) data for one of the most active inhibitors, NBCoV1, demonstrated drug-like properties. An in vivo pharmacokinetics (PK) study of NBCoV1 in rats demonstrated an excellent half-life (t1/2) of 11.3 h, a mean resident time (MRT) of 14.2 h, and oral bioavailability. We expect these lead inhibitors to facilitate the further development of preclinical and clinical candidates.


Assuntos
Antivirais/farmacologia , SARS-CoV-2/efeitos dos fármacos , Internalização do Vírus/efeitos dos fármacos , Animais , Antivirais/química , Antivirais/farmacocinética , Disponibilidade Biológica , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Coronavirus/classificação , Coronavirus/efeitos dos fármacos , Inibidores da Fusão de HIV/química , Inibidores da Fusão de HIV/farmacocinética , Inibidores da Fusão de HIV/farmacologia , Humanos , Ligação Proteica , Ratos , Bibliotecas de Moléculas Pequenas/química , Bibliotecas de Moléculas Pequenas/farmacocinética , Bibliotecas de Moléculas Pequenas/farmacologia , Glicoproteína da Espícula de Coronavírus/antagonistas & inibidores
12.
mBio ; 11(6)2020 12 11.
Artigo em Inglês | MEDLINE | ID: mdl-33310780

RESUMO

SARS-CoV-2 uses human angiotensin-converting enzyme 2 (ACE2) as the primary receptor to enter host cells and initiate the infection. The critical binding region of ACE2 is an ∼30-amino-acid (aa)-long helix. Here, we report the design of four stapled peptides based on the ACE2 helix, which is expected to bind to SARS-CoV-2 and prevent the binding of the virus to the ACE2 receptor and disrupt the infection. All stapled peptides showed high helical contents (50 to 94% helicity). In contrast, the linear control peptide NYBSP-C showed no helicity (19%). We have evaluated the peptides in a pseudovirus-based single-cycle assay in HT1080/ACE2 cells and human lung cell line A549/ACE2, overexpressing ACE2. Three of the four stapled peptides showed potent antiviral activity in HT1080/ACE2 (50% inhibitory concentration [IC50]: 1.9 to 4.1 µM) and A549/ACE2 (IC50: 2.2 to 2.8 µM) cells. The linear peptide NYBSP-C and the double-stapled peptide StRIP16, used as controls, showed no antiviral activity. Most significantly, none of the stapled peptides show any cytotoxicity at the highest dose tested. We also evaluated the antiviral activity of the peptides by infecting Vero E6 cells with the replication-competent authentic SARS-CoV-2 (US_WA-1/2020). NYBSP-1 was the most efficient, preventing the complete formation of cytopathic effects (CPEs) at an IC100 of 17.2 µM. NYBSP-2 and NYBSP-4 also prevented the formation of the virus-induced CPE with an IC100 of about 33 µM. We determined the proteolytic stability of one of the most active stapled peptides, NYBSP-4, in human plasma, which showed a half-life (T1/2) of >289 min.IMPORTANCE SARS-CoV-2 is a novel virus with many unknowns. No vaccine or specific therapy is available yet to prevent and treat this deadly virus. Therefore, there is an urgent need to develop novel therapeutics. Structural studies revealed critical interactions between the binding site helix of the ACE2 receptor and SARS-CoV-2 receptor-binding domain (RBD). Therefore, targeting the entry pathway of SARS-CoV-2 is ideal for both prevention and treatment as it blocks the first step of the viral life cycle. We report the design of four double-stapled peptides, three of which showed potent antiviral activity in HT1080/ACE2 cells and human lung carcinoma cells, A549/ACE2. Most significantly, the active stapled peptides with antiviral activity against SARS-CoV-2 showed high α-helicity (60 to 94%). The most active stapled peptide, NYBSP-4, showed substantial resistance to degradation by proteolytic enzymes in human plasma. The lead stapled peptides are expected to pave the way for further optimization of a clinical candidate.


Assuntos
Enzima de Conversão de Angiotensina 2/química , Peptídeos/farmacologia , SARS-CoV-2/efeitos dos fármacos , SARS-CoV-2/fisiologia , Ligação Viral/efeitos dos fármacos , Células A549 , Animais , Sítios de Ligação , Chlorocebus aethiops , Humanos , Concentração Inibidora 50 , Peptídeos/síntese química , Ligação Proteica , Células Vero
13.
Elife ; 92020 10 28.
Artigo em Inglês | MEDLINE | ID: mdl-33112236

RESUMO

Neutralizing antibodies elicited by prior infection or vaccination are likely to be key for future protection of individuals and populations against SARS-CoV-2. Moreover, passively administered antibodies are among the most promising therapeutic and prophylactic anti-SARS-CoV-2 agents. However, the degree to which SARS-CoV-2 will adapt to evade neutralizing antibodies is unclear. Using a recombinant chimeric VSV/SARS-CoV-2 reporter virus, we show that functional SARS-CoV-2 S protein variants with mutations in the receptor-binding domain (RBD) and N-terminal domain that confer resistance to monoclonal antibodies or convalescent plasma can be readily selected. Notably, SARS-CoV-2 S variants that resist commonly elicited neutralizing antibodies are now present at low frequencies in circulating SARS-CoV-2 populations. Finally, the emergence of antibody-resistant SARS-CoV-2 variants that might limit the therapeutic usefulness of monoclonal antibodies can be mitigated by the use of antibody combinations that target distinct neutralizing epitopes.


The new coronavirus, SARS-CoV-2, which causes the disease COVID-19, has had a serious worldwide impact on human health. The virus was virtually unknown at the beginning of 2020. Since then, intense research efforts have resulted in sequencing the coronavirus genome, identifying the structures of its proteins, and creating a wide range of tools to search for effective vaccines and therapies. Antibodies, which are immune molecules produced by the body that target specific segments of viral proteins can neutralize virus particles and trigger the immune system to kill cells infected with the virus. Several technologies are currently under development to exploit antibodies, including vaccines, blood plasma from patients who were previously infected, manufactured antibodies and more. The spike proteins on the surface of SARS-CoV-2 are considered to be prime antibody targets as they are accessible and have an essential role in allowing the virus to attach to and infect host cells. Antibodies bind to spike proteins and some can block the virus' ability to infect new cells. But some viruses, such as HIV and influenza, are able to mutate their equivalent of the spike protein to evade antibodies. It is unknown whether SARS-CoV-2 is able to efficiently evolve to evade antibodies in the same way. Weisblum, Schmidt et al. addressed this question using an artificial system that mimics natural infection in human populations. Human cells grown in the laboratory were infected with a hybrid virus created by modifying an innocuous animal virus to contain the SARS-CoV-2 spike protein, and treated with either manufactured antibodies or antibodies present in the blood of recovered COVID-19 patients. In this situation, only viruses that had mutated in a way that allowed them to escape the antibodies were able to survive. Several of the virus mutants that emerged had evolved spike proteins in which the segments targeted by the antibodies had changed, allowing these mutant viruses to remain undetected. An analysis of more than 50,000 real-life SARS-CoV-2 genomes isolated from patient samples further showed that most of these virus mutations were already circulating, albeit at very low levels in the infected human populations. These results show that SARS-CoV-2 can mutate its spike proteins to evade antibodies, and that these mutations are already present in some virus mutants circulating in the human population. This suggests that any vaccines that are deployed on a large scale should be designed to activate the strongest possible immune response against more than one target region on the spike protein. Additionally, antibody-based therapies that use two antibodies in combination should prevent the rise of viruses that are resistant to the antibodies and maintain the long-term effectiveness of vaccines and therapies.


Assuntos
Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/imunologia , Vacinas contra COVID-19/imunologia , COVID-19/imunologia , COVID-19/terapia , Mutação , SARS-CoV-2/imunologia , Glicoproteína da Espícula de Coronavírus/imunologia , Enzima de Conversão de Angiotensina 2/metabolismo , Anticorpos Monoclonais/imunologia , Sequência de Bases , COVID-19/virologia , Epitopos/genética , Epitopos/imunologia , Genes Reporter , Humanos , Imunização Passiva , Testes de Neutralização , Domínios Proteicos , Isoformas de Proteínas/imunologia , Vírus Reordenados/imunologia , Receptores Virais/metabolismo , SARS-CoV-2/genética , SARS-CoV-2/fisiologia , Seleção Genética , Glicoproteína da Espícula de Coronavírus/genética , Glicoproteína da Espícula de Coronavírus/metabolismo , Vesiculovirus/genética , Replicação Viral , Soroterapia para COVID-19
14.
Sci Rep ; 10(1): 16947, 2020 10 12.
Artigo em Inglês | MEDLINE | ID: mdl-33046791

RESUMO

Protein 4.1N, a member of the protein 4.1 family, is highly expressed in the brain. But its function remains to be fully defined. Using 4.1N-/- mice, we explored the function of 4.1N in vivo. We show that 4.1N-/- mice were born at a significantly reduced Mendelian ratio and exhibited high mortality between 3 to 5 weeks of age. Live 4.1N-/- mice were smaller than 4.1N+/+ mice. Notably, while there were no significant differences in organ/body weight ratio for most of the organs, the testis/body and ovary/body ratio were dramatically decreased in 4.1N-/- mice, demonstrating selective effects of 4.1N deficiency on the development of the reproductive systems. Histopathology of the reproductive organs showed atrophy of both testis and ovary. Specifically, in the testis there is a lack of spermatogenesis, lack of leydig cells and lack of mature sperm. Similarly, in the ovary there is a lack of follicular development and lack of corpora lutea formation, as well as lack of secretory changes in the endometrium. Examination of pituitary glands revealed that the secretory granules were significantly decreased in pituitary glands of 4.1N-/- compared to 4.1N+/+. Moreover, while GnRH was expressed in both neuronal cell body and axons in the hypothalamus of 4.1N+/+ mice, it was only expressed in the cell body but not the axons of 4.1N-/- mice. Our findings uncover a novel role for 4.1N in the axis of hypothalamus-pituitary gland-reproductive system.


Assuntos
Proteínas do Citoesqueleto/deficiência , Proteínas do Citoesqueleto/fisiologia , Genitália/metabolismo , Genitália/patologia , Proteínas de Membrana/deficiência , Proteínas de Membrana/fisiologia , Neuropeptídeos/deficiência , Neuropeptídeos/fisiologia , Sistemas Neurossecretores/metabolismo , Sistemas Neurossecretores/patologia , Animais , Proteínas do Citoesqueleto/genética , Feminino , Hormônio Liberador de Gonadotropina/genética , Hormônio Liberador de Gonadotropina/metabolismo , Humanos , Hipotálamo/metabolismo , Hipotálamo/patologia , Masculino , Proteínas de Membrana/genética , Camundongos Knockout , Neuropeptídeos/genética , Tamanho do Órgão , Ovário/patologia , Hipófise/metabolismo , Hipófise/patologia , Espermatogênese/genética , Testículo/patologia
15.
J Clin Microbiol ; 58(12)2020 11 18.
Artigo em Inglês | MEDLINE | ID: mdl-32917729

RESUMO

The development of neutralizing antibodies (NAbs) against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) following infection or vaccination is likely to be critical for the development of sufficient population immunity to drive cessation of the coronavirus disease of 2019 (COVID-19) pandemic. A large number of serologic tests, platforms, and methodologies are being employed to determine seroprevalence in populations to select convalescent plasma samples for therapeutic trials and to guide policies about reopening. However, the tests have substantial variations in sensitivity and specificity, and their ability to quantitatively predict levels of NAbs is unknown. We collected 370 unique donors enrolled in the New York Blood Center Convalescent Plasma Program between April and May of 2020. We measured levels of antibodies in convalescent plasma samples using commercially available SARS-CoV-2 detection tests and in-house enzyme-linked immunosorbent assays (ELISAs) and correlated serological measurements with NAb activity measured using pseudotyped virus particles, which offer the most informative assessment of antiviral activity of patient sera against viral infection. Our data show that a large proportion of convalescent plasma samples have modest antibody levels and that commercially available tests have various degrees of accuracy in predicting NAb activity. We found that the Ortho anti-SARS-CoV-2 total Ig and IgG high-throughput serological assays (HTSAs) and the Abbott SARS-CoV-2 IgG assay quantify levels of antibodies that strongly correlate with the results of NAb assays and are consistent with gold standard ELISA results. These findings provide immediate clinical relevance to serology results that can be equated to NAb activity and could serve as a valuable roadmap to guide the choice and interpretation of serological tests for SARS-CoV-2.


Assuntos
Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/imunologia , Variação Biológica da População , COVID-19/epidemiologia , COVID-19/imunologia , SARS-CoV-2/imunologia , Testes Sorológicos , Anticorpos Neutralizantes/sangue , Anticorpos Antivirais/sangue , COVID-19/diagnóstico , COVID-19/virologia , Linhagem Celular , Ensaio de Imunoadsorção Enzimática , Ensaios de Triagem em Larga Escala , Humanos , Imunofenotipagem , Leucócitos Mononucleares , Vigilância da População , Sensibilidade e Especificidade , Estudos Soroepidemiológicos , Sorogrupo , Testes Sorológicos/métodos , Estados Unidos/epidemiologia
16.
BMC Res Notes ; 13(1): 372, 2020 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-32762746

RESUMO

OBJECTIVE: COVID19 has caused a global and ongoing pandemic. The need for population seroconversion data is apparent to monitor and respond to the pandemic. Using a lateral flow assay (LFA) testing platform, the seropositivity in 63 New York Blood Center (NYBC) Convelescent Plasma (CP) donor samples were evaluated for the presence of COVID19 specific IgG and IgM. RESULTS: CP donors showed diverse antibody result. Convalescent donor plasma contains SARS-CoV-2 specific antibodies. Weak antibody bands may identify low titer CP donors. LFA tests can identify antibody positive individuals that have recovered from COVID19. Confirming suspected cases using antibody detection could help inform the patient and the community as to the relative risk to future exposure and a better understanding of disease exposure.


Assuntos
Anticorpos Antivirais/sangue , Antígenos Virais/imunologia , Betacoronavirus/imunologia , Doadores de Sangue , Técnicas de Laboratório Clínico/métodos , Convalescença , Infecções por Coronavirus/diagnóstico , Imunoensaio/métodos , Imunoglobulina G/sangue , Imunoglobulina M/sangue , Proteínas do Nucleocapsídeo/imunologia , Pandemias , Pneumonia Viral/diagnóstico , Testes Imediatos , Glicoproteína da Espícula de Coronavírus/imunologia , Especificidade de Anticorpos , COVID-19 , Teste para COVID-19 , Infecções por Coronavirus/terapia , Proteínas do Nucleocapsídeo de Coronavírus , Coloide de Ouro , Humanos , Imunização Passiva , Fosfoproteínas , Plasma , Domínios Proteicos , Proteínas Recombinantes/imunologia , Reprodutibilidade dos Testes , SARS-CoV-2 , Sensibilidade e Especificidade , Soroconversão , Soroterapia para COVID-19
17.
bioRxiv ; 2020 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-32743579

RESUMO

Neutralizing antibodies elicited by prior infection or vaccination are likely to be key for future protection of individuals and populations against SARS-CoV-2. Moreover, passively administered antibodies are among the most promising therapeutic and prophylactic anti-SARS-CoV-2 agents. However, the degree to which SARS-CoV-2 will adapt to evade neutralizing antibodies is unclear. Using a recombinant chimeric VSV/SARS-CoV-2 reporter virus, we show that functional SARS-CoV-2 S protein variants with mutations in the receptor binding domain (RBD) and N-terminal domain that confer resistance to monoclonal antibodies or convalescent plasma can be readily selected. Notably, SARS-CoV-2 S variants that resist commonly elicited neutralizing antibodies are now present at low frequencies in circulating SARS-CoV-2 populations. Finally, the emergence of antibody-resistant SARS-CoV-2 variants that might limit the therapeutic usefulness of monoclonal antibodies can be mitigated by the use of antibody combinations that target distinct neutralizing epitopes.

19.
medRxiv ; 2020 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-32577675

RESUMO

The development of neutralizing antibodies (nAb) against SARS-CoV-2, following infection or vaccination, is likely to be critical for the development of sufficient population immunity to drive cessation of the COVID19 pandemic. A large number of serologic tests, platforms and methodologies are being employed to determine seroprevalence in populations to select convalescent plasmas for therapeutic trials, and to guide policies about reopening. However, tests have substantial variability in sensitivity and specificity, and their ability to quantitatively predict levels of nAb is unknown. We collected 370 unique donors enrolled in the New York Blood Center Convalescent Plasma Program between April and May of 2020. We measured levels of antibodies in convalescent plasma using commercially available SARS-CoV- 2 detection tests and in-house ELISA assays and correlated serological measurements with nAb activity measured using pseudotyped virus particles, which offer the most informative assessment of antiviral activity of patient sera against viral infection. Our data show that a large proportion of convalescent plasma samples have modest antibody levels and that commercially available tests have varying degrees of accuracy in predicting nAb activity. We found the Ortho Anti-SARS-CoV-2 Total Ig and IgG high throughput serological assays (HTSAs), as well as the Abbott SARS-CoV-2 IgG assay, quantify levels of antibodies that strongly correlate with nAb assays and are consistent with gold-standard ELISA assay results. These findings provide immediate clinical relevance to serology results that can be equated to nAb activity and could serve as a valuable 'roadmap' to guide the choice and interpretation of serological tests for SARS-CoV-2.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...