Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nano Lett ; 22(4): 1680-1687, 2022 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-35129357

RESUMO

Magnetic field- and polarization-dependent measurements on bright and dark excitons in monolayer WSe2 combined with time-dependent density functional theory calculations reveal intriguing phenomena. Magnetic fields up to 25 T parallel to the WSe2 plane lead to a partial brightening of the energetically lower lying exciton, leading to an increase of the dephasing time. Using a broadband femtosecond pulse excitation, the bright and partially allowed excitonic state can be excited simultaneously, resulting in coherent quantum beating between these states. The magnetic fields perpendicular to the WSe2 plane energetically shift the bright and dark excitons relative to each other, resulting in the hybridization of the states at the K and K' valleys. Our experimental results are well captured by time-dependent density functional theory calculations. These observations show that magnetic fields can be used to control the coherent dephasing and coupling of the optical excitations in atomically thin semiconductors.

2.
Rev Sci Instrum ; 90(6): 063901, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-31255018

RESUMO

We performed nonlinear optical two-dimensional Fourier transform spectroscopy measurements using an optical resistive high-field magnet on GaAs quantum wells. Magnetic fields up to 25 T can be achieved using the split helix resistive magnet. Two-dimensional spectroscopy measurements based on the coherent four-wave mixing signal require phase stability. Therefore, these measurements are difficult to perform in environments prone to mechanical vibrations. Large resistive magnets use extensive quantities of cooling water, which causes mechanical vibrations, making two-dimensional Fourier transform spectroscopy very challenging. Here, we report on the strategies we used to overcome these challenges and maintain the required phase-stability throughout the measurement. A self-contained portable platform was used to set up the experiments within the time frame provided by a user facility. Furthermore, this platform was floated above the optical table in order to isolate it from vibrations originating from the resistive magnet. Finally, we present two-dimensional Fourier transform spectra obtained from GaAs quantum wells at magnetic fields up to 25 T and demonstrate the utility of this technique in providing important details, which are obscured in one dimensional spectroscopy.

3.
Nat Commun ; 9(1): 3720, 2018 09 13.
Artigo em Inglês | MEDLINE | ID: mdl-30213976

RESUMO

We present time-integrated four-wave mixing measurements on monolayer MoSe2 in magnetic fields up to 25 T. The experimental data together with time-dependent density function theory calculations provide interesting insights into the biexciton formation and dynamics. In the presence of magnetic fields the coherence at negative and positive time delays is dominated by intervalley biexcitons. We demonstrate that magnetic fields can serve as a control to enhance the biexciton formation and help search for more exotic states of matter, including the creation of multiple exciton complexes and excitonic condensates.

4.
Rev Sci Instrum ; 89(7): 073901, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-30068119

RESUMO

We describe the development of a broadband (0.3-10 THz) optical pump-terahertz probe spectrometer with an unprecedented combination of temporal resolution (≤200 fs) operating in external magnetic fields as high as 25 T using the new Split Florida-Helix magnet system. Using this new instrument, we measure the transient dynamics in a gallium arsenide four-quantum well sample after photoexcitation at 800 nm.

5.
J Phys Condens Matter ; 28(12): 125603, 2016 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-26932975

RESUMO

We report on ultrafast optical investigations of the light-induced insulator-to-metal phase transition in vanadium dioxide with controlled disorder generated by substrate mismatch. These results reveal common dynamics of this optically-induced phase transition that are independent of this disorder. Above the fluence threshold for completing the transition to the rutile crystalline phase, we find a common time scale, independent of sample morphology, of 40.5 ± 2 ps that is consistent with nucleation and growth dynamics of the R phase from the parent M1 ground state.

6.
Opt Lett ; 39(19): 5772-5, 2014 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-25360981

RESUMO

We have performed high-fluence, nondegenerate pump-probe spectroscopy in the Split Florida-Helix magnet at 25 T and 15 K. The electronic component of our ultrafast differential reflectivity can be described with a simplified four-level approximation to determine the scattering and recombination rates. Ultrafast oscillations are well described by a coherent acoustic phonon model. Our free-space ultrafast spectroscopic technique will permit future experimental investigations to study novel photoinduced phase transitions and complex interactions in correlated electron systems, which will require the high pulse energies of our free-space alternative.

7.
Nano Lett ; 14(3): 1127-33, 2014 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-24484272

RESUMO

Ultrafast photoinduced phase transitions could revolutionize data-storage and telecommunications technologies by modulating signals in integrated nanocircuits at terahertz speeds. In quantum phase-changing materials (PCMs), microscopic charge, lattice, and orbital degrees of freedom interact cooperatively to modify macroscopic electrical and optical properties. Although these interactions are well documented for bulk single crystals and thin films, little is known about the ultrafast dynamics of nanostructured PCMs when interfaced to another class of materials as in this case to active plasmonic elements. Here, we demonstrate how a mesh of gold nanoparticles, acting as a plasmonic photocathode, induces an ultrafast phase transition in nanostructured vanadium dioxide (VO2) when illuminated by a spectrally resonant femtosecond laser pulse. Hot electrons created by optical excitation of the surface-plasmon resonance in the gold nanomesh are injected ballistically across the Au/VO2 interface to induce a subpicosecond phase transformation in VO2. Density functional calculations show that a critical density of injected electrons leads to a catastrophic collapse of the 6 THz phonon mode, which has been linked in different experiments to VO2 phase transition. The demonstration of subpicosecond phase transformations that are triggered by optically induced electron injection opens the possibility of designing hybrid nanostructures with unique nonequilibrium properties as a critical step for all-optical nanophotonic devices with optimizable switching thresholds.

8.
Opt Express ; 20(28): 29717-26, 2012 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-23388799

RESUMO

We develop a new characteristic matrix-based method to analyze cyclotron resonance experiments in high mobility two-dimensional electron gas samples where direct interference between primary and satellite reflections has previously limited the frequency resolution. This model is used to simulate experimental data taken using terahertz time-domain spectroscopy that show multiple pulses from the substrate with a separation of 15 ps that directly interfere in the time-domain. We determine a cyclotron dephasing lifetime of 15.1 ± 0.5 ps at 1.5 K and 5.0 ± 0.5 ps at 75 K.

9.
Nano Lett ; 9(7): 2610-3, 2009 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-19492842

RESUMO

We describe a film of highly aligned single-walled carbon nanotubes that acts as an excellent terahertz linear polarizer. There is virtually no attenuation (strong absorption) when the terahertz polarization is perpendicular (parallel) to the nanotube axis. From the data, the reduced linear dichrosim was calculated to be 3, corresponding to a nematic order parameter of 1, which demonstrates nearly perfect alignment as well as intrinsically anisotropic terahertz response of single-walled carbon nanotubes in the film.


Assuntos
Nanotubos de Carbono/química , Anisotropia , Teste de Materiais , Microscopia de Polarização , Propriedades de Superfície
10.
J Phys Chem A ; 112(34): 7840-7, 2008 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-18681413

RESUMO

Ultrafast pump-probe spectroscopic studies have been performed on (C 5Me 5) 2U[- N=C(Ph)(CH 2Ph)] 2 and (C 5Me 5) 2Th[- N=C(Ph)(CH 2Ph)] 2 including, for the uranium complex, the first direct measurement of dynamics of electronic deactivation within a 5f-electron manifold. Evidence has been found for strong coupling between the electronic ground state and the f-electron manifold which dominates the dynamics of the excited states of the bis(ketimide) uranium complex. These also demonstrate strong singlet-f manifold coupling, which assists in the deactivation of the photoexcited state of the uranium complex, and provide information on intersystem crossing and internal conversion processes in both complexes.

11.
Opt Lett ; 32(13): 1845-7, 2007 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-17603589

RESUMO

We have observed cyclotron resonance in a high-mobility GaAs/AlGaAs two-dimensional electron gas by using the techniques of terahertz time-domain spectroscopy combined with magnetic fields. From this, we calculate the real and imaginary parts of the diagonal elements of the magnetoconductivity tensor, which in turn allows us to extract the concentration, effective mass, and scattering time of the electrons in the sample. We demonstrate the utility of ultrafast terahertz spectroscopy, which can recover the true linewidth of cyclotron resonance in a high-mobility (>10(6) cm(2)V(-1)s(-1)) sample without being affected by the saturation effect.

12.
Catheter Cardiovasc Interv ; 62(2): 155-61, 2004 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-15170703

RESUMO

This study was designed to evaluate safety and effectiveness of the 0.9 mm excimer laser coronary catheter with increased laser parameters. We report a prospective trial of 100 calcified and/or balloon-resistant lesions where a new 0.9 mm excimer laser catheter was used at standard or higher energy level to facilitate angioplasty. Standard in-hospital clinical and angiographic parameters were collected and measured. Laser technical success was obtained in 87 lesions (92%), procedural success was reached in 88 lesions (93%), and clinical success in 82 lesions (86%). Increased laser parameters were used for 29 resistant lesions. This new 0.9 mm excimer laser coronary catheter using higher energy parameters seems to be safe and effective for management of calcified and nondilatable lesions.


Assuntos
Angioplastia Coronária com Balão , Angioplastia com Balão a Laser , Calcinose/terapia , Cateterismo Cardíaco , Estenose Coronária/terapia , Idoso , Canadá/epidemiologia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Complicações Pós-Operatórias/etiologia , Complicações Pós-Operatórias/mortalidade , Estudos Prospectivos , Análise de Sobrevida , Resultado do Tratamento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...