Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Pediatr Orthop ; 32(5): 445-51, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22706457

RESUMO

BACKGROUND: Several studies have examined the biomechanical stability of smooth wire fixation constructs used to stabilize pediatric supracondylar humerus fractures. An analysis of varying pin size, number, and lateral starting points has not been performed previously. METHODS: Twenty synthetic humeri were sectioned in the midolecranon fossa to simulate a supracondylar humerus fracture. Specimens were all anatomically reduced and pinned with a lateral-entry configuration. There were 2 main groups based on specific lateral-entry starting point (direct lateral vs. capitellar). Within these groups pin size (1.6 vs. 2.0 mm) and number of pins (2 vs. 3) were varied and the specimens biomechanically tested. Each construct was tested in extension, varus, valgus, internal, and external rotation. Data for fragment stiffness (N/mm or N mm/degree) were analyzed with a multivariate analysis of variance and Bonferroni post hoc analysis (P<0.05). RESULTS: The capitellar starting point provided for increased stiffness in internal and external rotation compared with a direct lateral starting point (P<0.05). Two 2.0-mm pins were statistically superior to two 1.6-mm pins in internal and external rotation. There was no significant difference found comparing two versus three 1.6-mm pins. CONCLUSIONS: The best torsional resistances were found in the capitellar starting group along with increased pin diameter. The capitellar starting point enables the surgeon to engage sufficient bone of the distal fragment and maximizes pin separation at the fracture site. In our anatomically reduced fracture model, the addition of a third pin provided no biomechanical advantage. CLINICAL RELEVANCE: Consider a capitellar starting point for the more distally placed pin in supracondylar humerus fractures, and if the patient's size allows, a larger pin construct will provide improved stiffness with regard to rotational stresses.


Assuntos
Pinos Ortopédicos , Fixação de Fratura/métodos , Fraturas do Úmero/cirurgia , Fenômenos Biomecânicos , Criança , Humanos , Modelos Anatômicos , Análise Multivariada , Estudos Retrospectivos , Rotação
2.
J Pediatr Orthop ; 30(3): 235-9, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-20357588

RESUMO

BACKGROUND: Nonoperative methods for clubfoot treatment include the Ponseti technique and French functional method. The purpose of this study was to compare the gait of children presenting with moderate clubfeet who were treated successfully with these techniques. We hypothesized: (1) no difference in gait parameters of moderate clubfeet treated with either of these nonsurgical techniques and (2) gait parameters after treatment for less severe feet would more closely approximate normal gait. METHODS: Patients whose clubfeet were initially scored between 6 and <10 on the Dimeglio scale underwent gait analysis at the age of 2 years. Kinematic evaluation of the ankle was analyzed and kinematic data were classified as abnormal if more than 1 standard deviation from age-matched normal data. Spearman nonparametric correlation coefficients were used to analyze combined data of moderate to very severe clubfeet to determine any relationship between initial severity and gait outcomes. RESULTS: Gait analysis was performed on 33 patients with 40 moderate clubfeet [17 Ponseti, 23 French physical therapy (PT) feet]. Three Ponseti feet were excluded because they had undergone surgery. No statistically significant differences existed in ankle equinus, dorsiflexion, or push-off plantarflexion between the groups. Swing phase foot drop was present in 6 PT feet (26%) compared with zero Ponseti feet (P=0.026). Normal kinematic ankle motion was present more often in the Ponseti group (82%) than PT (48%) (P=0.027). Regardless of treatment, residual intoeing was seen in one-third of children with moderate clubfeet. The combined group of moderate and severe clubfeet showed no correlation between initial Dimeglio score and presence of normal ankle motion or normal gait at 2 years-of-age. CONCLUSIONS: Normal ankle motion was documented more frequently in the Ponseti feet compared with the PT group. Recent implementation of early tendo-achilles release in PT feet may change these outcomes in the future. In conclusion, gait in children with moderate clubfeet is similar to those in patients with severe clubfeet, but the likelihood of surgery may be less. LEVEL OF EVIDENCE: Therapeutic level II.


Assuntos
Moldes Cirúrgicos , Pé Torto Equinovaro/terapia , Modalidades de Fisioterapia , Tornozelo/fisiopatologia , Fenômenos Biomecânicos , Pré-Escolar , Pé Torto Equinovaro/fisiopatologia , Marcha , Humanos , Lactente , Estudos Prospectivos , Amplitude de Movimento Articular , Recuperação de Função Fisiológica , Índice de Gravidade de Doença , Resultado do Tratamento
3.
Nucleic Acids Res ; 36(Database issue): D793-9, 2008 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-18089548

RESUMO

Here we report the new features and improvements in our latest release of the H-Invitational Database (H-InvDB; http://www.h-invitational.jp/), a comprehensive annotation resource for human genes and transcripts. H-InvDB, originally developed as an integrated database of the human transcriptome based on extensive annotation of large sets of full-length cDNA (FLcDNA) clones, now provides annotation for 120 558 human mRNAs extracted from the International Nucleotide Sequence Databases (INSD), in addition to 54 978 human FLcDNAs, in the latest release H-InvDB_4.6. We mapped those human transcripts onto the human genome sequences (NCBI build 36.1) and determined 34 699 human gene clusters, which could define 34 057 (98.1%) protein-coding and 642 (1.9%) non-protein-coding loci; 858 (2.5%) transcribed loci overlapped with predicted pseudogenes. For all these transcripts and genes, we provide comprehensive annotation including gene structures, gene functions, alternative splicing variants, functional non-protein-coding RNAs, functional domains, predicted sub cellular localizations, metabolic pathways, predictions of protein 3D structure, mapping of SNPs and microsatellite repeat motifs, co-localization with orphan diseases, gene expression profiles, orthologous genes, protein-protein interactions (PPI) and annotation for gene families. The current H-InvDB annotation resources consist of two main views: Transcript view and Locus view and eight sub-databases: the DiseaseInfo Viewer, H-ANGEL, the Clustering Viewer, G-integra, the TOPO Viewer, Evola, the PPI view and the Gene family/group.


Assuntos
Bases de Dados Genéticas , Genes , RNA Mensageiro/química , Animais , Mapeamento Cromossômico , DNA Complementar/química , Humanos , Internet , Proteínas/química , Proteínas/genética , Proteínas/metabolismo , RNA Mensageiro/genética , Interface Usuário-Computador
4.
Genome Res ; 17(2): 175-83, 2007 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-17210932

RESUMO

We present here the annotation of the complete genome of rice Oryza sativa L. ssp. japonica cultivar Nipponbare. All functional annotations for proteins and non-protein-coding RNA (npRNA) candidates were manually curated. Functions were identified or inferred in 19,969 (70%) of the proteins, and 131 possible npRNAs (including 58 antisense transcripts) were found. Almost 5000 annotated protein-coding genes were found to be disrupted in insertional mutant lines, which will accelerate future experimental validation of the annotations. The rice loci were determined by using cDNA sequences obtained from rice and other representative cereals. Our conservative estimate based on these loci and an extrapolation suggested that the gene number of rice is approximately 32,000, which is smaller than previous estimates. We conducted comparative analyses between rice and Arabidopsis thaliana and found that both genomes possessed several lineage-specific genes, which might account for the observed differences between these species, while they had similar sets of predicted functional domains among the protein sequences. A system to control translational efficiency seems to be conserved across large evolutionary distances. Moreover, the evolutionary process of protein-coding genes was examined. Our results suggest that natural selection may have played a role for duplicated genes in both species, so that duplication was suppressed or favored in a manner that depended on the function of a gene.


Assuntos
Arabidopsis/genética , Genoma de Planta , Oryza/genética , Proteínas de Arabidopsis/genética , Códon/genética , DNA Complementar/genética , DNA de Plantas/genética , Bases de Dados de Proteínas , Evolução Molecular , Variação Genética , Mutagênese Insercional , Fases de Leitura Aberta , Proteínas de Plantas/genética , RNA Mensageiro/genética , RNA de Plantas/genética , RNA de Transferência/genética , Especificidade da Espécie
5.
Nucleic Acids Res ; 33(Database issue): D567-72, 2005 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-15608263

RESUMO

The Human Anatomic Gene Expression Library (H-ANGEL) is a resource for information concerning the anatomical distribution and expression of human gene transcripts. The tool contains protein expression data from multiple platforms that has been associated with both manually annotated full-length cDNAs from H-InvDB and RefSeq sequences. Of the H-Inv predicted genes, 18 897 have associated expression data generated by at least one platform. H-ANGEL utilizes categorized mRNA expression data from both publicly available and proprietary sources. It incorporates data generated by three types of methods from seven different platforms. The data are provided to the user in the form of a web-based viewer with numerous query options. H-ANGEL is updated with each new release of cDNA and genome sequence build. In future editions, we will incorporate the capability for expression data updates from existing and new platforms. H-ANGEL is accessible at http://www.jbirc.aist.go.jp/hinv/h-angel/.


Assuntos
Bases de Dados Genéticas , Perfilação da Expressão Gênica , Sistemas de Gerenciamento de Base de Dados , Perfilação da Expressão Gênica/normas , Humanos , RNA Mensageiro/análise , Reprodutibilidade dos Testes , Integração de Sistemas , Distribuição Tecidual , Interface Usuário-Computador
6.
PLoS Biol ; 2(6): e162, 2004 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-15103394

RESUMO

The human genome sequence defines our inherent biological potential; the realization of the biology encoded therein requires knowledge of the function of each gene. Currently, our knowledge in this area is still limited. Several lines of investigation have been used to elucidate the structure and function of the genes in the human genome. Even so, gene prediction remains a difficult task, as the varieties of transcripts of a gene may vary to a great extent. We thus performed an exhaustive integrative characterization of 41,118 full-length cDNAs that capture the gene transcripts as complete functional cassettes, providing an unequivocal report of structural and functional diversity at the gene level. Our international collaboration has validated 21,037 human gene candidates by analysis of high-quality full-length cDNA clones through curation using unified criteria. This led to the identification of 5,155 new gene candidates. It also manifested the most reliable way to control the quality of the cDNA clones. We have developed a human gene database, called the H-Invitational Database (H-InvDB; http://www.h-invitational.jp/). It provides the following: integrative annotation of human genes, description of gene structures, details of novel alternative splicing isoforms, non-protein-coding RNAs, functional domains, subcellular localizations, metabolic pathways, predictions of protein three-dimensional structure, mapping of known single nucleotide polymorphisms (SNPs), identification of polymorphic microsatellite repeats within human genes, and comparative results with mouse full-length cDNAs. The H-InvDB analysis has shown that up to 4% of the human genome sequence (National Center for Biotechnology Information build 34 assembly) may contain misassembled or missing regions. We found that 6.5% of the human gene candidates (1,377 loci) did not have a good protein-coding open reading frame, of which 296 loci are strong candidates for non-protein-coding RNA genes. In addition, among 72,027 uniquely mapped SNPs and insertions/deletions localized within human genes, 13,215 nonsynonymous SNPs, 315 nonsense SNPs, and 452 indels occurred in coding regions. Together with 25 polymorphic microsatellite repeats present in coding regions, they may alter protein structure, causing phenotypic effects or resulting in disease. The H-InvDB platform represents a substantial contribution to resources needed for the exploration of human biology and pathology.


Assuntos
Biologia Computacional/métodos , DNA Complementar/genética , Bases de Dados Genéticas , Genes/fisiologia , Genoma Humano , Processamento Alternativo/genética , Genes/genética , Humanos , Internet , Repetições de Microssatélites/genética , Fases de Leitura Aberta/genética , Polimorfismo Genético , Polimorfismo de Nucleotídeo Único , Estrutura Terciária de Proteína
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...