Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Pharm ; : 124342, 2024 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-38880253

RESUMO

Schizophrenia is a psychiatric disorder that results from abnormal levels of neurotransmitters in the brain. Risperidone (RIS) is a common drug prescribed for the treatment of schizophrenia. RIS is a hydrophobic drug that is typically administered orally or intramuscularly. Transdermal drug delivery (TDD) could potentially improve the delivery of RIS. This study focused on the development of RIS nanocrystals (NCs), for the first time, which were incorporated into dissolving microneedle array patches (DMAPs) to facilitate the drug delivery of RIS. RIS NCs were formulated via wet-media milling technique using poly(vinylalcohol) (PVA) as a stabiliser. NCs with particle size of 300 nm were produced and showed an enhanced release profile up to 80 % over 28 days. Ex vivo results showed that 1.16 ±â€¯0.04 mg of RIS was delivered to both the receiver compartment and full-thickness skin from NCs loaded DMAPs compared to 0.75 ±â€¯0.07 mg from bulk RIS DMAPs. In an in vivo study conducted using female Sprague Dawley rats, both RIS and its active metabolite 9-hydroxyrisperidone (9-OH-RIS) were detected in plasma samples for 5 days. In comparison with the oral group, DMAPs improved the overall pharmacokinetic profile in plasma with a ∼ 15 folds higher area under the curve (AUC) value. This work has represented the novel delivery of the antipsychotic drug, RIS, through microneedles. It also offers substantial evidence to support the broader application of MAPs for the transdermal delivery of poorly water-soluble drugs.

2.
Mol Pharm ; 21(5): 2512-2533, 2024 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-38602861

RESUMO

Parkinson's disease (PD) is a debilitating neurodegenerative disease primarily impacting neurons responsible for dopamine production within the brain. Pramipexole (PRA) is a dopamine agonist that is currently available in tablet form. However, individuals with PD commonly encounter difficulties with swallowing and gastrointestinal motility, making oral formulations less preferable. Microneedle (MN) patches represent innovative transdermal drug delivery devices capable of enhancing skin permeability through the creation of microconduits on the surface of the skin. MNs effectively reduce the barrier function of skin and facilitate the permeation of drugs. The work described here focuses on the development of polymeric MN systems designed to enhance the transdermal delivery of PRA. PRA was formulated into both dissolving MNs (DMNs) and directly compressed tablets (DCTs) to be used in conjunction with hydrogel-forming MNs (HFMNs). In vivo investigations using a Sprague-Dawley rat model examined, for the first time, if it was beneficial to prolong the application of DMNs and HFMNs beyond 24 h. Half of the patches in the MN cohorts were left in place for 24 h, whereas the other half remained in place for 5 days. Throughout the entire 5 day study, PRA plasma levels were monitored for all cohorts. This study confirmed the successful delivery of PRA from DMNs (Cmax = 511.00 ± 277.24 ng/mL, Tmax = 4 h) and HFMNs (Cmax = 328.30 ± 98.04 ng/mL, Tmax = 24 h). Notably, both types of MNs achieved sustained PRA plasma levels over a 5 day period. In contrast, following oral administration, PRA remained detectable in plasma for only 48 h, achieving a Cmax of 159.32 ± 113.43 ng/mL at 2 h. The HFMN that remained in place for 5 days demonstrated the most promising performance among all investigated formulations. Although in the early stages of development, the findings reported here offer a hopeful alternative to orally administered PRA. The sustained plasma profile observed here has the potential to reduce the frequency of PRA administration, potentially enhancing patient compliance and ultimately improving their quality of life. This work provides substantial evidence advocating the development of polymeric MN-mediated drug delivery systems to include sustained plasma levels of hydrophilic pharmaceuticals.


Assuntos
Administração Cutânea , Sistemas de Liberação de Medicamentos , Agulhas , Doença de Parkinson , Pramipexol , Ratos Sprague-Dawley , Pramipexol/administração & dosagem , Pramipexol/farmacocinética , Animais , Ratos , Doença de Parkinson/tratamento farmacológico , Sistemas de Liberação de Medicamentos/métodos , Masculino , Absorção Cutânea/efeitos dos fármacos , Pele/metabolismo , Pele/efeitos dos fármacos , Antiparkinsonianos/administração & dosagem , Antiparkinsonianos/farmacocinética , Agonistas de Dopamina/administração & dosagem , Agonistas de Dopamina/farmacocinética , Hidrogéis/química
3.
Adv Healthc Mater ; : e2304082, 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38471772

RESUMO

Dissolving microarray patches (DMAPs) represent an innovative approach to minimally invasive transdermal drug delivery, demonstrating efficacy in delivering both small and large therapeutic molecules. However, concerns raised in end-user surveys have hindered their commercialization efforts. One prevalent issue highlighted in these surveys is the lack of clear indicators for successful patch insertion and removal time. To address this challenge, a color-change-based feedback system is devised, which confirms the insertion and dissolution of DMAPs, aiming to mitigate the aforementioned problems. The approach combines hydrophilic needles containing model drugs (fluorescein sodium and fluorescein isothiocyanate (FITC)-dextran) with a hydrophobic poly(lactic acid) baseplate infused with moisture-sensitive silica gel particles. The successful insertion and subsequent complete dissolution of the needle shaft are indicated by the progressive color change of crystal violet encapsulated in the silica. Notably, distinct color alterations on the baseplate, observed 30 min and 1 h after insertion for FITC-dextran and fluorescein sodium DMAPs respectively, signal the full dissolution of the needles, confirming the complete cargo delivery and enabling timely patch removal. This innovative feedback system offers a practical solution for addressing end-user concerns and may significantly contribute to the successful commercialization of DMAPs by providing a visualized drug delivery method.

4.
Pharm Dev Technol ; 29(3): 164-175, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38363720

RESUMO

This study aimed to demonstrate the potential of using porous microneedles (PMNs) as a promising tool for the noninvasive quantification of topically applied pharmaceutical products. We fabricated a porous microneedle (PMN) from a blend of cellulose acetate and dimethyl sulfoxide by casting and phase separation; it was characterized using scanning electron microscopy, Raman spectroscopy, differential scanning calorimetry, and a Texture Analyzer. An ex vivo study was conducted as a proof-of-concept study to assess whether this PMN could be used to quantify drug absorption through the skin after the topical administration of two nonequivalent products of sodium ibuprofen (gel and dissolving microneedles). Three cellulose acetate formulations (PMN1: 37.5%, PMN-2: 44.4%, and PMN-3: 50%) were used to prepare PMN patches; subsequently, these were evaluated for their morphological and insertion properties. Only PMN-2 microneedle patches were chosen to continue with the ex vivo study. The ex vivo study results demonstrated that PMNs could absorb and release sodium ibuprofen (SDIB) and differentiate between two different SDIB topical products. This can be attributed to the porous and interconnected architecture of these microneedles. This developmental study highlights the potential success of such a tool for the quantification of dermal drug concentration and supports moving to in vivo tests.


Assuntos
Ibuprofeno , Agulhas , Preparações Farmacêuticas , Porosidade , Estudo de Prova de Conceito , Pele , Sistemas de Liberação de Medicamentos/métodos , Administração Cutânea , Sódio
5.
ACS Biomater Sci Eng ; 10(3): 1554-1576, 2024 03 11.
Artigo em Inglês | MEDLINE | ID: mdl-38407993

RESUMO

Telmisartan (TEL) is a promising antihypertensive agent among other angiotensin receptor blockers. However, its oral application is limited by its poor water solubility. This study presents the successful utilization of biomaterial-based hydrogel-forming microneedles integrated with a direct compressed tablet reservoir (HFMN-DCT) for the transdermal delivery of telmisartan in the treatment of hypertension. The combination of PVP, PVA, and tartaric acid was used in the HFMN formulation. A range of cross-linking temperatures and times were employed to optimize the characteristics of the HFMN. The HFMN exhibited excellent swelling capacity, mechanical strength, and insertion properties. Additionally, the poorly soluble characteristic of TEL was improved by the inclusion complex formulation with ß-cyclodextrin (ßCD). Phase solubility analysis showed an Ap-type diagram, indicating a higher-order complex between TEL and ßCD, with respect to ßCD. A ratio of TEL:ßCD of 1:4 mM demonstrates the highest solubility enhancement of TEL. The inclusion complex formation was confirmed by FTIR, XRD, DSC, and molecular docking studies. A significantly higher release of TEL (up to 20-fold) from the inclusion complex was observed in the in vitro release study. Subsequently, a DCT reservoir was developed using various concentrations of sodium starch glycolate. Essentially, both the HFMN and DCT reservoir exhibit hemocompatibility and did not induce any skin irritation. The optimized combination of the HFMN-DCT reservoir showed an ex vivo permeation profile of 83.275 ± 2.405%. Notably, the proposed system showed superior pharmacokinetic profiles in the in vivo investigation using male Wistar rats. Overall, this study highlights the potential of HFMN-DCT reservoir systems as a versatile platform for transdermal drug delivery applications.


Assuntos
Ciclodextrinas , Ratos , Animais , Masculino , Telmisartan/farmacocinética , Hidrogéis , Simulação de Acoplamento Molecular , Ratos Wistar
6.
Mol Pharm ; 20(12): 6246-6261, 2023 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-37975721

RESUMO

Fungal keratitis (FK) is a fungal infection of the cornea, which is part of the eye and causes corneal ulcers and an increased risk of permanent blindness, which is often found in Candida albicans species. Amphotericin B (AMB), which is a group of polyenes as the first-line treatment of FK, is effective in annihilating C. albicans. However, AMB preparations such as eye drops and ointments have major drawbacks, for instance, requiring more frequent administrations, loss of the drug by the drainage process, and rapid elimination in the precornea, which result in low bioavailability of the drug. An ocular dissolving microneedle containing the solid dispersion amphotericin B (DMN-SD-AMB) had been developed using a mixture of poly(vinyl alcohol) (PVA) and poly(vinylpyrrolidone) (PVP) polymers, while the solid dispersion AMB (SD-AMB) was contained in the needle as a drug. This study aims to determine the most optimal and safest DMN-SD-AMB formula for the treatment of FK in the eye as well as a solution to overcome the low bioavailability of AMB eye drops and ointment preparations. SD-AMB had been successfully developed, which was characterized by increased antifungal activity and drug release in vitro compared to other treatments. Furthermore, DMN-SD-AMB studies had also been successfully performed with the best formulation, which exhibited the best ex vivo corneal permeation profile and antifungal activity as well as being safe from eye irritation. In addition, an in vivo antifungal activity using a rabbit infection model shows that the number of fungal colonies was 0.98 ± 0.11 log10 CFU/mL (F3), 5.76 ± 0.32 log10 CFU/mL (AMB eye drops), 4.01 ± 0.28 log10 CFU/mL (AMB ointments), and 9.09 ± 0.65 log10 CFU/mL (control), which differed significantly (p < 0.05). All of these results evidence that DMN-SD-AMB is a new approach to developing intraocular preparations for the treatment of FK.


Assuntos
Úlcera da Córnea , Infecções Oculares Fúngicas , Ceratite , Animais , Coelhos , Antifúngicos/farmacologia , Antifúngicos/uso terapêutico , Anfotericina B/farmacologia , Anfotericina B/uso terapêutico , Ceratite/tratamento farmacológico , Ceratite/microbiologia , Infecções Oculares Fúngicas/tratamento farmacológico , Infecções Oculares Fúngicas/microbiologia , Úlcera da Córnea/tratamento farmacológico , Candida , Soluções Oftálmicas/uso terapêutico , Candida albicans
7.
Adv Drug Deliv Rev ; 201: 115055, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37597586

RESUMO

The minimally-invasive and painless nature of microneedle (MN) application has enabled the technology to obviate many issues with injectable drug delivery. MNs not only administer therapeutics directly into the dermal and ocular space, but they can also control the release profile of the active compound over a desired period. To enable prolonged delivery of payloads, various MN types have been proposed and evaluated, including dissolving MNs, polymeric MNs loaded or coated with nanoparticles, fast-separable MNs hollow MNs, and hydrogel MNs. These intricate yet intelligent delivery platforms provide an attractive approach to decrease side effects and administration frequency, thus offer the potential to increase patient compliance. In this review, MN formulations that are loaded with various therapeutics for long-acting delivery to address the clinical needs of a myriad of diseases are discussed. We also highlight the design aspects, such as polymer selection and MN geometry, in addition to computational and mathematical modeling of MNs that are necessary to help streamline and develop MNs with high translational value and clinical impact. Finally, up-scale manufacturing and regulatory hurdles along with potential avenues that require further research to bring MN technology to the market are carefully considered. It is hoped that this review will provide insight to formulators and clinicians that the judicious selection of materials in tandem with refined design may offer an elegant approach to achieve sustained delivery of payloads through the simple and painless application of a MN patch.


Assuntos
Sistemas de Liberação de Medicamentos , Pele , Humanos , Polímeros/farmacologia , Agulhas , Administração Cutânea
8.
Pharmaceutics ; 15(5)2023 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-37242771

RESUMO

Bacterial vaginosis is an infectious disease that has significantly affected women's health. Metronidazole has been widely used as a drug for treating bacterial vaginosis. Nevertheless, the currently available therapies have been found to be inefficient and inconvenient. Here, we developed the combination approach of gel flake and thermoresponsive hydrogel systems. The gel flakes were prepared using gellan gum and chitosan, showing that the incorporation of metronidazole was able to provide a sustained release pattern for 24 h with an entrapment efficiency of >90%. Moreover, the gel flakes were incorporated into Pluronics-based thermoresponsive hydrogel using the combination of Pluronic F127 and F68. The hydrogels were found to exhibit the desired thermoresponsive properties, showing sol-gel transition at vaginal temperature. Following the addition of sodium alginate as a mucoadhesive agent, the hydrogel was retained in the vaginal tissue for more than 8 h, with more than 5 mg of metronidazole retained in the ex vivo evaluation. Finally, using the bacterial vaginosis infection model in rats, this approach could decrease the viability of Escherichia coli and Staphylococcus aureus with reduction percentages of more than 95% after 3 days of treatment, with the healing ability similar to normal vaginal tissue. In conclusion, this study offers an effective approach for the treatment of bacterial vaginosis.

9.
Drug Deliv Transl Res ; 13(8): 2183-2193, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37120679

RESUMO

Due to the presence of peptidase and protease in the gastrointestinal tract, peptides are subjected to digestion and inactivation when administrated orally. To avoid degradation and maintain the desired efficacy of peptide drugs, there is a demand to develop transdermal and intradermal delivery systems. This requires efficient and specific analytical methods to separate and quantify the peptide drugs from the formulation and the skin matrix in the early stages of pharmaceutical development. A high-performance liquid chromatography (HPLC) system equipped with a fluorometric detector was used to quantify enfuvirtide, which is the first fusion inhibitor for HIV treatment. The HPLC method was developed and validated according to the ICH Q2(R1) guidelines. The viability of the method was demonstrated during in vitro studies, where samples were analysed following intradermal administration of a thermosensitive in situ forming gel. Compared with previously reported methods, this assay proved efficient, sensitive and accurate, with a detection limit of 0.74 µg/mL and a run time of 9 min, mitigating the use of any internal standards and detergents. The addition of an organic solvent to the samples successfully solved the problem of low recovery caused by the adsorption of the drug to the plastic consumables in the sample treatment process. The amount of enfuvirtide releasing from the in situ gel through skin after 7 hours was 16.25 ± 7.08 µg, which was significantly lower than the reconstituted FUZEON® itself (26.68 ± 10.45 µg), showing a longer release profile. The results may be beneficial as a constructive input for future enfuvirtide quantification within a preclinical setting through in vitro release studies across the skin.


Assuntos
Inibidores da Fusão de HIV , Fragmentos de Peptídeos , Enfuvirtida , Cromatografia Líquida de Alta Pressão/métodos , Fragmentos de Peptídeos/química , Proteína gp41 do Envelope de HIV/química , Inibidores da Fusão de HIV/uso terapêutico , Preparações Farmacêuticas
10.
Adv Healthc Mater ; 12(5): e2202066, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36414019

RESUMO

Extracellular tissue fluids are interesting biomatrices that have recently attracted scientists' interest. Many significant biomarkers for localized external organ diseases have been isolated from this biofluid. In the diagnostic and disease monitoring context, measuring biochemical entities from the fluids surrounding the diseased tissues may give more important clinical value than measuring them at a systemic level. Despite all these facts, pushing tissue fluid-based diagnosis and monitoring forward to clinical settings faces one major problem: its accessibility. Most extracellular tissue fluid, such as interstitial fluid (ISF), is abundant but hard to collect, and the currently available technologies are invasive and expensive. This is where novel microneedle technology can help tackle this significant obstacle. The ability of microneedle technology to minimally invasively access tissue fluid-containing biomarkers will enable ISF and other tissue fluid utilization in the clinical diagnosis and monitoring of localized diseases. This review attempts to present the current pursuit of the application of microneedle systems as a diagnostic and monitoring platform, along with the recent progress of biomarker detection in diagnosing and monitoring localized external organ diseases. Then, the potential use of various microneedles in future clinical diagnostics and monitoring of localized diseases is discussed by presenting the currently studied cases.


Assuntos
Líquido Extracelular , Agulhas , Biomarcadores
11.
ACS Appl Mater Interfaces ; 14(51): 56560-56577, 2022 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-36516276

RESUMO

One of the biggest challenges in infectious disease treatment is the existence of bacterial infections in underskin wound tissue, such as cellulitis. Compared to other treatments, it is harder for antibacterial drugs to penetrate the physical barrier on the affected skin with a nonspecific target, making conventional therapy for cellulitis infection more difficult and considered. In this novel research, we pioneer a combined strategy of dissolving microneedles (MNs) and bacteria-sensitive microparticles (MPs) for enhanced penetration and targeted delivery of chloramphenicol (CHL) to the infection site specifically. The polycaprolactone polymer was used to make MPs because of its sensitivity to bacterial enzyme stimuli. The best microparticle formulation was discovered and optimized using the Design-Expert application. Furthermore, this study evaluated the antibacterial activity of MPs in vitro and in vivo on the mutant Drosophila larval infection model. This strategy shows improvement in the antibacterial activity of MPs and higher retention duration compared to conventional cream formulation, and the inclusion of these MPs into dissolving MNs was able to greatly improve the dermatokinetic characteristics of CHL in ex vivo evaluation. Importantly, the antimicrobial efficacy in an ex vivo infection model demonstrated that, following the use of this strategy, bacterial bioburdens decreased by up to 99.99% after 24 h. The findings offered a proof of concept for the enhancement of CHL dermatokinetic profiles and antimicrobial activities after its preparation into bacteria-sensitive MPs and distribution by MNs. Future research should investigate in vivo effectiveness in an appropriate animal model.


Assuntos
Anti-Infecciosos , Celulite (Flegmão) , Animais , Administração Cutânea , Cloranfenicol/farmacologia , Pele , Antibacterianos/farmacologia , Agulhas , Sistemas de Liberação de Medicamentos
12.
Pharmaceutics ; 14(11)2022 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-36432684

RESUMO

Levofloxacin (LVX) and amphotericin B (AMB) have been widely used to treat bacterial and fungal infections in the clinic. Herein, we report, for the first time, chitosan films loaded with AMB and LVX as wound dressings to combat antimicrobial infections. Additionally, we developed and validated a high-performance liquid chromatography (HPLC) method coupled with a UV detector to simultaneously quantify both AMB and LVX. The method is easy, precise, accurate and linear for both drugs at a concentration range of 0.7-5 µg/mL. The validated method was used to analyse the drug release, ex vivo deposition and permeation from the chitosan films. LVX was released completely from the chitosan film after a week, while approximately 60% of the AMB was released. Ex vivo deposition study revealed that, after 24-hour application, 20.96 ± 13.54 µg of LVX and approximately 0.35 ± 0.04 µg of AMB was deposited in porcine skin. Approximately 0.58 ± 0.16 µg of LVX permeated through the skin. AMB was undetectable in the receptor compartment due to its poor solubility and permeability. Furthermore, chitosan films loaded with AMB and LVX were found to be able to inhibit the growth of both Candida albicans and Staphylococcus aureus, indicating their potential for antimicrobial applications.

13.
Int J Pharm ; 628: 122327, 2022 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-36280218

RESUMO

Metronidazole (MNZ) is a nitroimidazole derivative antibiotic that has been generally used in the treatment of rosacea. However, it has low molecular weight and lipophilicity, limiting the effectiveness of MNZ in the topical treatment of rosacea. This study reports an MNZ-loaded solid lipid microparticle (SLM) gel formulation with sustained drug release effects required in the treatment of rosacea. SLM was formulated using the double emulsification method with five different concentrations of glyceryl monostearate (GMS) as a solid lipid used to encapsulate MNZ. All the MNZ-loaded SLM formulas were extensively characterized by various analytical tools. After optimized MNZ-loaded SLM formulation was obtained, then formulated into gel preparation. To obtain a gel formula with good physical characteristics and drug release in the development of topical therapy, the SLM-loaded gel was further evaluated, covering various parameters such as pH, viscosity, rheology, spreadability, extrudability, skin occlusivity, gel strength, permeation and retention ex vivo, as well as hemolysis tests and antioxidant activity. The evaluation results showed that the SLM formulations had desired properties with optimum encapsulation efficiency. Moreover, the gels prepared from carbomer possessed desired characteristics and were found to be hemocompatible. In addition, the gel formula with a carbomer concentration of 1.25 % can provide better drug release with the highest MNZ retention after 24 h of 2.35 ± 0.05 mg. Notably, the formulation of MNZ into SLM and hydrogel did not affect the antioxidant activity. Thus, it can provide continuous drug release, which could potentially be useful in increasing efficacy in rosacea therapy. The results obtained also showed a significant difference (p < 0.05) compared to the control formula and other formulas. Therefore, this study has proven a new approach to developing drug delivery systems for rosacea treatment.


Assuntos
Metronidazol , Rosácea , Humanos , Metronidazol/química , Hidrogéis/uso terapêutico , Estudo de Prova de Conceito , Antioxidantes/uso terapêutico , Rosácea/tratamento farmacológico , Géis/uso terapêutico , Lipídeos/química
14.
Eur J Pharm Sci ; 168: 106057, 2022 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-34743031

RESUMO

Valsartan (VAL) is a BCS class II drug with low solubility and high permeability and, thus, its formulations often encounter low bioavailability problems. Its low bioavailability can be improved through enhanced formulation, such as incorporating it into a solid dispersion system (SD). The absorption can be further enhanced through gastroretentive systems. Herein, we developed a novel combination delivery approach consisting of floating in-situ gel and SD. VAL was incorporated with polymer carrier PVP and PEG 6000 and its solubility was then evaluated. The study found that VAL-SD containing PVP K-30 as the carrier with drug:PVP K-30 ratio of 1:3 shown highest solubility in different media. Moreover, DSC and XRD evaluations exhibited the change of VAL from crystal to amorphous following SD formulation. The SD was then formulated into floating in-situ gel preparations using sodium alginate as gel forming compound and HPMC as the controlled release matrix. The prepared VAL-SD floating in-situ gels were evaluated for their physical properties and drug release profile. The results showed that all physical evaluation of the floating in-situ gel formula possessed desirable physical properties and the use of HPMC in floating in-situ gel was able to sustain the in vitro release of VAL for 24 h in biorelevant media. Importantly, the effect of food intake on VAL release was also investigated, for the first time, showing that the VAL release could be controlled in FaSSGF (Fasted-State Simulated Gastric Fluid) in 2 h and FeSSGF (Fed-State Simulated Gastric Fluid) onwards. Thus, in can be hypothesized that the food intake did not affect the VAL release after 2 h in an empty gastric environment. Leading on from these results, in vivo studies in an animal model should be carried out to further assess the potency of this system.


Assuntos
Ingestão de Alimentos , Animais , Disponibilidade Biológica , Preparações de Ação Retardada , Géis , Solubilidade , Comprimidos , Valsartana
15.
ACS Appl Mater Interfaces ; 13(15): 18128-18141, 2021 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-33840187

RESUMO

The poor solubility of itraconazole (ITZ) has limited its efficacy in the treatment of vaginal candidiasis. Accordingly, the improvement of ITZ solubility using a solid dispersion technique was important to enhance its antifungal activity. Besides, as the purpose of this research was to develop local-targeting formulations, bioadhesive-thermosensitive in situ vaginal gel combined with the gel-flake system was found to be the most suitable choice. To obtain optimum solubility, entrapment efficiency, and drug-loading capacity, optimization of solid dispersion (SD) and gel-flake formulations of ITZ was performed using a composite central design. The results showed that the optimized formulation of SD-ITZ was able to significantly enhance its solubility in both water and simulated vaginal fluid to reach the values of 4.211 ± 0.23 and 4.291 ± 0.21 mg/mL, respectively. Additionally, the optimized formulation of SD-ITZ gel flakes possessed desirable entrapment efficiency and drug-loading capacity. The in situ vaginal gel containing SD-ITZ gel flakes was prepared using PF-127 and PF-68, as the gelling agents, with the addition of hydroxypropyl methylcellulose (HPMC) as the mucoadhesive polymer. It was found that the obtained in situ vaginal gel provided desirable physicochemical properties and was able to retain an amount of more than 4 mg of ITZ in the vaginal tissue after 8 h. Importantly, according to the in vivo antifungal activity using infection animal models, the incorporation of the solid dispersion technique and gel-flake system in the formulation of the bioadhesive-thermosensitive in situ vaginal gel led to the most significant decrease of the growth of Candida albicans reaching <1 log colony-forming units (CFU)/mL or equivalent to <10% of the total colony after 14 days, indicating the improvement of ITZ antifungal activity compared to other treated groups. Therefore, these studies confirmed a great potential to enhance the efficacy of ITZ in treating vaginal candidiasis. Following these findings, several further experiments need to be performed to ensure acceptability and usability before the research reaches the clinical stage.


Assuntos
Antifúngicos/farmacologia , Candidíase/tratamento farmacológico , Itraconazol/farmacologia , Temperatura , Vagina/microbiologia , Adesividade , Animais , Antifúngicos/química , Antifúngicos/uso terapêutico , Feminino , Itraconazol/química , Itraconazol/uso terapêutico , Ratos , Solubilidade , Cremes, Espumas e Géis Vaginais/química , Cremes, Espumas e Géis Vaginais/farmacologia , Cremes, Espumas e Géis Vaginais/uso terapêutico
16.
Int J Pharm ; 602: 120623, 2021 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-33892058

RESUMO

Itraconazole is a lipophilic drug, which limits its absorption for ocular administration. This study focused on the incorporation of itraconazole into nanocrystalline carrier system with stabilizer Pluronic® F127 and was further formulated into thermosensitive in situ ocular gel. Itraconazole nanocrystals (ITZ-NCs) were fabricated using media milling method with ultra-small-scale device. The obtained nanocrystals were observed to have a better in vitro activity against C. albicans (CA) compared to free itraconazole suspension in water. Furthermore, the optimization of the thermosensitive ocular gel formula was carried out with a central composite design, using three types of polymers, namely Pluronic® F127, Pluronic® F68, and hydroxypropyl methylcellulose (HPMC). After being dispersed into the optimized thermosensitive gel base, ITZ-NCs did not alter in terms of physical characteristics. Ex vivo ocularkinetic studies on infected porcine eye models showed a better profile of the optimized formula of thermosensitive in situ ocular gel when compared to standard gel base. Importantly, the ex vivo antifungal activity of these preparations was also increased, with a 93% decrease in the CA population observed after 48 h in infected porcine eye model. Altogether, this work has provided evidence of a novel approach in developing more advanced treatments for fungal keratitis.


Assuntos
Infecções Oculares Fúngicas , Ceratite , Nanopartículas , Animais , Antifúngicos , Infecções Oculares Fúngicas/tratamento farmacológico , Itraconazol , Ceratite/tratamento farmacológico , Suínos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...