Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Phys Rev Lett ; 101(13): 132502, 2008 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-18851441

RESUMO

The electric quadrupole moment and the magnetic moment of the 11Li halo nucleus have been measured with more than an order of magnitude higher precision than before, |Q| = 33.3(5) mb and mu = +3.6712(3)muN, revealing a 8.8(1.5)% increase of the quadrupole moment relative to that of 9Li. This result is compared to various models that aim at describing the halo properties. In the shell model an increased quadrupole moment points to a significant occupation of the 1d orbits, whereas in a simple halo picture this can be explained by relating the quadrupole moments of the proton distribution to the charge radii. Advanced models so far fail to reproduce simultaneously the trends observed in the radii and quadrupole moments of the lithium isotopes.

2.
Phys Rev Lett ; 94(2): 022501, 2005 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-15698167

RESUMO

Unambiguous values of the spin and magnetic moment of 31Mg are obtained by combining the results of a hyperfine-structure measurement and a beta-NMR measurement, both performed with an optically polarized ion beam. With a measured nuclear g factor and spin I=1/2, the magnetic moment mu(31Mg)=-0.88355(15)mu(N) is deduced. A revised level scheme of 31Mg (Z=12, N=19) with ground state spin/parity I(pi)=1/2(+) is presented, revealing the coexistence of 1p-1h and 2p-2h intruder states below 500 keV. Advanced shell-model calculations and the Nilsson model suggest that the I(pi)=1/2(+) ground state is a strongly prolate deformed intruder state. This result plays a key role for the understanding of nuclear structure changes due to the disappearance of the N=20 shell gap in neutron-rich nuclei.

3.
Phys Rev Lett ; 93(14): 142503, 2004 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-15524786

RESUMO

We report on the g factor measurement of an isomer in the neutron-rich (61)(26)Fe (E(*)=861 keV and T(1/2)=239(5) ns). The isomer was produced and spin aligned via a projectile-fragmentation reaction at intermediate energy, the time dependent perturbed angular distribution method being used for the measurement of the g factor. For the first time, due to significant improvements of the experimental technique, an appreciable residual alignment of the nuclear spin ensemble has been observed, allowing a precise determination of its g factor, including the sign: g=-0.229(2). In this way we open the possibility to study moments of very neutron-rich short-lived isomers, not accessible via other production and spin-orientation methods.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...