Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
1.
Alcohol Clin Exp Res (Hoboken) ; 48(6): 1088-1095, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38622062

RESUMO

BACKGROUND: Enhanced liver fibrosis (ELF) score is an accurate, noninvasive test for assessing the severity of liver fibrosis in chronic liver disease, including alcohol-related liver disease. However, whether the ELF score changes during alcohol withdrawal is unknown. This pilot study assessed changes in the ELF score during withdrawal in patients with a history of excessive alcohol intake. METHODS: In this prospective study, ELF was performed on day 0 (D0, at the beginning of hospitalization), at day 7 (D7, on discharge from hospital), and at follow-up visits on days 30 (D30) and 90 (D90). Transient elastography (TE) was also assessed on days 4 (D4) and D30. RESULTS: The study included 35 patients (71% male) with a mean alcohol intake of 139 g/day. On D30 and D90, 8 and 13 patients had resumed alcohol consumption (mean intake of 90 and 80 g/day, respectively). In patients who remained abstinent, the mean ELF score was 8.93 on D0, 9.14 on D30 (p = 0.32), and 9.27 on D90 (p = 0.14). In patients who resumed alcohol, mean ELF score was 9.7 on D0, 10.05 on D30 (p = 0.09), and 9.71 on D90 (p = 0.12). ELF score was comparable over the first months after withdrawal, although there was a slight increase in the first week (mean ELF score increased from 9.24 on D0 to 9.74 on D7, p < 0.001). Mean TE value was 7.9 kPa on D4 and 8.1 kPa on D30 (p = 0.84) in patients who resumed alcohol consumption, and 8.3 and 7.5 kPa (p = 0.03) on D4 and D30, respectively, in abstinent patients. CONCLUSION: The ELF score is stable during the first months after withdrawal and thus appears to be a useful tool to assess liver fibrosis or cirrhosis in this setting. Nevertheless, because in the first week there is a transient increase in ELF score, caution in interpretation is warranted.

2.
Int J Mol Sci ; 24(11)2023 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-37298701

RESUMO

Oxytocin (OT), a neuropeptide best known for its role in emotional and social behaviors, has been linked to osteoarthritis (OA). This study aimed to investigate the serum OT level in hip and/or knee OA patients and to study its association with disease progression. Patients from the KHOALA cohort with symptomatic hip and/or knee OA (Kellgren and Lawrence (KL) scores of 2 and 3) and follow-up at 5 years were included in this analysis. The primary endpoint was structural radiological progression, which was defined as an increase of at least one KL point at 5 years. Logistic regression models were used to estimate the associations between OT levels and KL progression while controlling for gender, age, BMI, diabetes and leptin levels. Data from 174 hip OA patients and 332 knee OA patients were analyzed independently. No differences in OT levels were found between the 'progressors' and 'non-progressors' groups among the hip OA patients and knee OA patients, respectively. No statistically significant associations were found between the OT levels at baseline and KL progression at 5 years, the KL score at baseline or the clinical outcomes. Higher structural damage at baseline and severe structural progression of hip and knee osteoarthritis did not appear to be associated with a low serum OT level at baseline.


Assuntos
Osteoartrite do Quadril , Osteoartrite do Joelho , Humanos , Osteoartrite do Joelho/diagnóstico por imagem , Osteoartrite do Quadril/diagnóstico por imagem , Ocitocina , Estudos Prospectivos , Radiografia , Progressão da Doença
3.
Int J Mol Sci ; 24(5)2023 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-36901966

RESUMO

Diabetes mellitus is a major public health problem in all countries due to its high human and economic burden. Major metabolic alterations are associated with the chronic hyperglycemia that characterizes diabetes and causes devastating complications, including retinopathy, kidney failure, coronary disease and increased cardiovascular mortality. The most common form is type 2 diabetes (T2D) accounting for 90 to 95% of the cases. These chronic metabolic disorders are heterogeneous to which genetic factors contribute, but so do prenatal and postnatal life environmental factors including a sedentary lifestyle, overweight, and obesity. However, these classical risk factors alone cannot explain the rapid evolution of the prevalence of T2D and the high prevalence of type 1 diabetes in particular areas. Among environmental factors, we are in fact exposed to a growing amount of chemical molecules produced by our industries or by our way of life. In this narrative review, we aim to give a critical overview of the role of these pollutants that can interfere with our endocrine system, the so-called endocrine-disrupting chemicals (EDCs), in the pathophysiology of diabetes and metabolic disorders.


Assuntos
Diabetes Mellitus Tipo 2 , Disruptores Endócrinos , Poluentes Ambientais , Doenças Metabólicas , Feminino , Gravidez , Humanos , Diabetes Mellitus Tipo 2/epidemiologia , Disruptores Endócrinos/efeitos adversos , Fatores de Risco , Doenças Metabólicas/epidemiologia , Poluentes Ambientais/efeitos adversos
4.
Int J Mol Sci ; 23(14)2022 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-35887249

RESUMO

Endocrine Disrupting Compounds (EDCs) are found in everyday products. Widely distributed throughout the environment, persistent organic pollutants (POPs) are a specific class of EDCs that can accumulate in adipose tissue. Many of them induce adverse effects on human health-such as obesity, fertility disorders and cancers-by perturbing hormone effects. We previously identified many compounds with EDC activity in the circulation of obese patients who underwent bariatric surgery. Herein, we analyzed the effects of four of them (aldrin, BDE28, PFOA and PCB153) on two cancer cell lines of hormone-sensitive organs (prostate and breast). Each cell line was exposed to serial dilutions of EDCs from 10-6 M to 10-12 M; cytotoxicity and proliferation were monitored using the IncuCyte® technology. We showed that none of these EDCs induce cytotoxicity and that PFOA and PCB153, only at very low doses (10-12 M), increase the proliferation of DU145 (prostate cancer) and MCF7 (breast cancer) cells, while the same effects are observed with high concentrations (10-6 M) for aldrin or BDE28. Regarding the mechanistic aspects, PFOA uses two different signaling pathways between the two lines (the Akt/mTORC1 and PlexinD1 in MCF7 and DU145, respectively). Thus, our study demonstrates that even at picomolar (10-12 M) concentrations PFOA and PCB153 increase the proliferation of prostate and breast cancer cell lines and can be considered possible carcinogens.


Assuntos
Neoplasias da Mama , Disruptores Endócrinos , Aldrina , Disruptores Endócrinos/toxicidade , Hormônios , Humanos , Masculino , Obesidade , Próstata
5.
Front Endocrinol (Lausanne) ; 12: 691658, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34354670

RESUMO

Obesity is a major public health concern at the origin of many pathologies, including cancers. Among them, the incidence of gastro-intestinal tract cancers is significantly increased, as well as the one of hormone-dependent cancers. The metabolic changes caused by overweight mainly with the development of adipose tissue (AT), insulin resistance and chronic inflammation induce hormonal and/or growth factor imbalances, which impact cell proliferation and differentiation. AT is now considered as the main internal source of endocrine disrupting chemicals (EDCs) representing a low level systemic chronic exposure. Some EDCs are non-metabolizable and can accumulate in AT for a long time. We are chronically exposed to low doses of EDCs able to interfere with the endocrine metabolism of the body. Importantly, several EDCs have been involved in the genesis of obesity affecting profoundly the physiology of AT. In parallel, EDCs have been implicated in the development of cancers, in particular hormone-dependent cancers (prostate, testis, breast, endometrium, thyroid). While it is now well established that AT secretes adipocytokines that promote tumor progression, it is less clear whether they can initiate cancer. Therefore, it is important to better understand the effects of EDCs, and to investigate the buffering effect of AT in the context of progression but also initiation of cancer cells using adequate models recommended to uncover and validate these mechanisms for humans. We will review and argument here the potential role of AT as a crosstalk between EDCs and hormone-dependent cancer development, and how to assess it.


Assuntos
Tecido Adiposo/efeitos dos fármacos , Disruptores Endócrinos/toxicidade , Poluentes Ambientais/toxicidade , Neoplasias/induzido quimicamente , Tecido Adiposo/citologia , Tecido Adiposo/metabolismo , Animais , Humanos , Modelos Biológicos
6.
Elife ; 102021 04 22.
Artigo em Inglês | MEDLINE | ID: mdl-33884955

RESUMO

To adapt in an ever-changing environment, cells must integrate physical and chemical signals and translate them into biological meaningful information through complex signaling pathways. By combining lipidomic and proteomic approaches with functional analysis, we have shown that ubiquitin domain-containing protein 1 (UBTD1) plays a crucial role in both the epidermal growth factor receptor (EGFR) self-phosphorylation and its lysosomal degradation. On the one hand, by modulating the cellular level of ceramides through N-acylsphingosine amidohydrolase 1 (ASAH1) ubiquitination, UBTD1 controls the ligand-independent phosphorylation of EGFR. On the other hand, UBTD1, via the ubiquitination of Sequestosome 1 (SQSTM1/p62) by RNF26 and endolysosome positioning, participates in the lysosomal degradation of EGFR. The coordination of these two ubiquitin-dependent processes contributes to the control of the duration of the EGFR signal. Moreover, we showed that UBTD1 depletion exacerbates EGFR signaling and induces cell proliferation emphasizing a hitherto unknown function of UBTD1 in EGFR-driven human cell proliferation.


Assuntos
Ceramidas/metabolismo , Lisossomos/enzimologia , Neoplasias da Próstata/enzimologia , Ubiquitinas/metabolismo , Ceramidase Ácida/genética , Ceramidase Ácida/metabolismo , Linhagem Celular Tumoral , Proliferação de Células , Receptores ErbB/genética , Receptores ErbB/metabolismo , Regulação Enzimológica da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Humanos , Cinética , Lisossomos/genética , Masculino , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Fosforilação , Neoplasias da Próstata/genética , Neoplasias da Próstata/patologia , Proteólise , Proteína Sequestossoma-1/genética , Proteína Sequestossoma-1/metabolismo , Transdução de Sinais , Ubiquitinação , Ubiquitinas/genética
7.
Front Endocrinol (Lausanne) ; 11: 600404, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33574796

RESUMO

The G protein-coupled estrogen receptor (GPER), also known as GPR30, is a widely conserved 7-transmembrane-domain protein which has been identified as a novel 17ß-estradiol-binding protein that is structurally distinct from the classic oestrogen receptors (ERα and ERß). There are still conflicting data regarding the exact role and the natural ligand of GPER/GPR30 in reproductive tracts as both male and female knock-out mice are fertile and have no abnormalities of reproductive organs. Testicular germ cell cancers (TGCCs) are the most common malignancy in young males and the most frequent cause of death from solid tumors in this age group. Clinical and experimental studies suggested that estrogens participate in the physiological and pathological control of male germ cell proliferation. In human seminoma cell line, while 17ß-estradiol (E2) inhibits in vitro cell proliferation through an ERß-dependent mechanism, an impermeable E2 conjugate (E2 coupled to BSA), in vitro cell proliferation is stimulated by activating ERK1/2 and protein kinase A through a membrane GPCR that we further identified as GPER/GPR30. The same effect was observed with low but environmentally relevant doses of BPA, an estrogenic endocrine disrupting compound. Furthermore, GPER/GPR30 is specifically overexpressed in seminomas but not in non-seminomas and this overexpression is correlated with an ERß-downregulation. This GPER/GPR30 overexpression could be linked to some genetic variations, as single nucleotide polymorphisms, which was also reported in other hormone-dependent cancers. We will review here the implication of GPER/GPR30 in TGCCs pathophysiology and the arguments to consider GPER/GPR30 as a potential therapeutic target in humans.


Assuntos
Neoplasias Embrionárias de Células Germinativas/patologia , Receptores de Estrogênio/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Neoplasias Testiculares/patologia , Humanos , Neoplasias Embrionárias de Células Germinativas/metabolismo , Transdução de Sinais , Neoplasias Testiculares/metabolismo
8.
J Endocrinol ; 244(1): 189-200, 2020 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-31697642

RESUMO

Enhanced beta cell glycolytic and oxidative metabolism are necessary for glucose-induced insulin secretion. While several microRNAs modulate beta cell homeostasis, miR-375 stands out as it is highly expressed in beta cells where it regulates beta cell function, proliferation and differentiation. As glucose metabolism is central in all aspects of beta cell functioning, we investigated the role of miR-375 in this process using human and rat islets; the latter being an appropriate model for in-depth investigation. We used forced expression and repression of mR-375 in rat and human primary islet cells followed by analysis of insulin secretion and metabolism. Additionally, miR-375 expression and glucose-induced insulin secretion were compared in islets from rats at different developmental ages. We found that overexpressing of miR-375 in rat and human islet cells blunted insulin secretion in response to glucose but not to α-ketoisocaproate or KCl. Further, miR-375 reduced O2 consumption related to glycolysis and pyruvate metabolism, but not in response to α-ketoisocaproate. Concomitantly, lactate production was augmented suggesting that glucose-derived pyruvate is shifted away from mitochondria. Forced miR-375 expression in rat or human islets increased mRNA levels of pyruvate dehydrogenase kinase-4, but decreased those of pyruvate carboxylase and malate dehydrogenase1. Finally, reduced miR-375 expression was associated with maturation of fetal rat beta cells and acquisition of glucose-induced insulin secretion function. Altogether our findings identify miR-375 as an efficacious regulator of beta cell glucose metabolism and of insulin secretion, and could be determinant to functional beta cell developmental maturation.


Assuntos
Glucose/metabolismo , Secreção de Insulina/genética , MicroRNAs/metabolismo , Transdução de Sinais/genética , Adulto , Animais , Feminino , Humanos , Ilhotas Pancreáticas/metabolismo , Masculino , Ratos , Ratos Wistar
9.
Biochim Biophys Acta Mol Basis Dis ; 1865(9): 2393-2402, 2019 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-31152866

RESUMO

MicroRNAs (miRNAs) are important modulators of thermogenic brown adipose tissue (BAT). They have been involved in its differentiation and hence its functioning. While different regulators of the miRNA machinery have been shown to be essential for BAT differentiation, little is known about their implication in BAT activation. The aim of this work was to evaluate the role of AGO2, the chief miRNA mediator, in BAT activation. We took advantage of two non-genetic models of BAT activation to analyze the miRNA machinery and miRNA expression in BAT. We used principal component analysis (PCA) to obtain an overview of miRNA expression according to the BAT activation state. In vitro, we examined AGO2 expression during brown adipocyte differentiation and activation. Finally, we downregulated AGO2 to reveal its potential role in the thermogenic function of brown adipocytes. PCA analysis allowed to cluster animals on their miRNA signature in active BAT. Moreover, hierarchical clustering showed a positive correlation between global upregulation of miRNA expression and active BAT. Consistently, the miRNA machinery, particularly AGO2, was upregulated in vivo in active BAT and in vitro in mature brown adipocytes. Finally, the partial loss-of-function of AGO2 in mature brown adipocytes is sufficient to lead to a diminished expression of UCP1 associated to a decreased uncoupled respiration. Therefore, our study shows the potential contribution of AGO2 in BAT activation. Since BAT is a calorie-burning tissue these data have a translational potential in terms of therapeutic target in the field of altered fuel homeostasis associated to obesity and diabetes.


Assuntos
Proteínas Argonautas/metabolismo , Tecido Adiposo Marrom/citologia , Tecido Adiposo Marrom/metabolismo , Agonistas de Receptores Adrenérgicos beta 3/farmacologia , Animais , Proteínas Argonautas/antagonistas & inibidores , Proteínas Argonautas/genética , Diferenciação Celular , MicroRNAs/metabolismo , Mitocôndrias/metabolismo , Análise de Componente Principal , Interferência de RNA , RNA Interferente Pequeno/metabolismo , Ratos , Ratos Wistar , Tubulina (Proteína)/metabolismo , Proteína Desacopladora 1/genética , Proteína Desacopladora 1/metabolismo , Regulação para Cima/efeitos dos fármacos
10.
Diabetes ; 66(3): 627-639, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-27927722

RESUMO

Epidemiological and animal studies show that deleterious maternal environments predispose aging offspring to metabolic disorders and type 2 diabetes. Young progenies in a rat model of maternal low-protein (LP) diet are normoglycemic despite collapsed insulin secretion. However, without further worsening of the insulin secretion defect, glucose homeostasis deteriorates in aging LP descendants. Here we report that normoglycemic and insulinopenic 3-month-old LP progeny shows increased body temperature and energy dissipation in association with enhanced brown adipose tissue (BAT) activity. In addition, it is protected against a cold challenge and high-fat diet (HFD)-induced obesity with associated insulin resistance and hyperglycemia. Surgical BAT ablation in 3-month-old LP offspring normalizes body temperature and causes postprandial hyperglycemia. At 10 months, BAT activity declines in LP progeny with the appearance of reduced protection to HFD-induced obesity; at 18 months, LP progeny displays a BAT activity comparable to control offspring and insulin resistance and hyperglycemia occur. Together our findings identify BAT as a decisive physiological determinant of the onset of metabolic dysregulation in offspring predisposed to altered ß-cell function and hyperglycemia and place it as a critical regulator of fetal programming of adult metabolic disease.


Assuntos
Tecido Adiposo Marrom/metabolismo , Regulação da Temperatura Corporal , Dieta com Restrição de Proteínas , Metabolismo Energético , Desenvolvimento Fetal , Hiperglicemia/metabolismo , Resistência à Insulina , Obesidade/metabolismo , Tecido Adiposo Marrom/cirurgia , Fatores Etários , Animais , Glicemia/metabolismo , Western Blotting , Diabetes Mellitus Tipo 2/metabolismo , Dieta Hiperlipídica , Feminino , Teste de Tolerância a Glucose , Homeostase , Imuno-Histoquímica , Insulina/metabolismo , Lipólise , Masculino , Período Pós-Prandial , Gravidez , Efeitos Tardios da Exposição Pré-Natal/metabolismo , Ratos , Ratos Wistar , Reação em Cadeia da Polimerase em Tempo Real , Triglicerídeos/metabolismo
11.
Adipocyte ; 5(2): 186-95, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27386154

RESUMO

Human brown adipocytes are able to burn fat and glucose and are now considered as a potential strategy to treat obesity, type 2 diabetes and metabolic disorders. Besides their thermogenic function, brown adipocytes are able to secrete adipokines. One of these is visfatin, a nicotinamide phosphoribosyltransferase involved in nicotinamide dinucleotide synthesis, which is known to participate in the synthesis of insulin by pancreatic ß cells. In a therapeutic context, it is of interest to establish whether a potential correlation exists between brown adipocyte activation and/or brite adipocyte recruitment, and adipokine expression. We analyzed visfatin expression, as a pre-requisite to its secretion, in rodent and human biopsies and cell models of brown/brite adipocytes. We found that visfatin was preferentially expressed in mature adipocytes and that this expression was higher in brown adipose tissue of rodents compared to other fat depots. However, using various rodent models we were unable to find any correlation between visfatin expression and brown or brite adipocyte activation or recruitment. Interestingly, the situation is different in humans where visfatin expression was found to be equivalent between white and brown or brite adipocytes in vivo and in vitro. In conclusion, visfatin can be considered only as a rodent brown adipocyte biomarker, independently of tissue activation.

12.
Diabetologia ; 58(9): 1978-92, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26155747

RESUMO

The explosive increase in the worldwide prevalence of diabetes over recent years has transformed the disease into a major public health concern. While diabetes can be screened for and diagnosed by reliable biological tests based on blood glucose levels, by and large there are no means of detecting at-risk patients or of following diabetic complications. The recent discovery that microRNAs are not only chief intracellular players in many biological processes, including insulin secretion and action, but are also circulating, has put them in the limelight as possible biological markers. Here we discuss the potential role of circulating microRNAs as biomarkers in the context of diabetes and its associated complications.


Assuntos
Biomarcadores/sangue , Diabetes Mellitus/sangue , Insulina/sangue , MicroRNAs/sangue , Proliferação de Células , Complicações do Diabetes/sangue , Retinopatia Diabética/sangue , Feminino , Humanos , Isquemia/sangue , Masculino , Insuficiência Renal Crônica/sangue , Fatores de Risco
13.
Diabetes ; 63(10): 3416-27, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-24834976

RESUMO

The intrauterine environment of the fetus is a preeminent actor in long-term health. Indeed, mounting evidence shows that maternal malnutrition increases the risk of type 2 diabetes (T2D) in progeny. Although the consequences of a disturbed prenatal environment on the development of the pancreas are known, the underlying mechanisms are poorly defined. In rats, restriction of protein during gestation alters the development of the endocrine pancreas and favors the occurrence of T2D later in life. Here we evaluate the potential role of perturbed microRNA (miRNA) expression in the decreased ß-cell mass and insulin secretion characterizing progeny of pregnant dams fed a low-protein (LP) diet. miRNA profiling shows increased expression of several miRNAs, including miR-375, in the pancreas of fetuses of mothers fed an LP diet. The expression of miR-375 remains augmented in neoformed islets derived from fetuses and in islets from adult (3-month-old) progeny of mothers fed an LP diet. miR-375 regulates the proliferation and insulin secretion of dissociated islet cells, contributing to the reduced ß-cell mass and function of progeny of mothers fed an LP diet. Remarkably, miR-375 normalization in LP-derived islet cells restores ß-cell proliferation and insulin secretion. Our findings suggest the existence of a developmental memory in islets that registers intrauterine protein restriction. Hence, pancreatic failure after in utero malnutrition could result from transgenerational transmission of miRNA misexpression in ß-cells.


Assuntos
MicroRNAs/metabolismo , Pâncreas/metabolismo , Efeitos Tardios da Exposição Pré-Natal/metabolismo , Deficiência de Proteína/metabolismo , Animais , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/patologia , Dieta com Restrição de Proteínas , Feminino , MicroRNAs/genética , Pâncreas/patologia , Gravidez , Efeitos Tardios da Exposição Pré-Natal/genética , Efeitos Tardios da Exposição Pré-Natal/patologia , Deficiência de Proteína/genética , Deficiência de Proteína/patologia , Ratos , Ratos Wistar
14.
Orphanet J Rare Dis ; 9: 19, 2014 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-24502792

RESUMO

BACKGROUND: Oligosaccharidoses, which belong to the lysosomal storage diseases, are inherited metabolic disorders due to the absence or the loss of function of one of the enzymes involved in the catabolic pathway of glycoproteins and indirectly of glycosphingolipids. This enzymatic deficiency typically results in the abnormal accumulation of uncompletely degraded oligosaccharides in the urine. Since the clinical features of many of these disorders are not specific for a single enzyme deficiency, unambiguous screening is critical to limit the number of costly enzyme assays which otherwise must be performed. METHODS: Here we provide evidence for the advantages of using a MALDI-TOF/TOF (matrix-assisted laser desorption ionization time-of-flight) mass spectrometric (MS) method for screening oligosaccharidoses. Urine samples from previously diagnosed patients or from unaffected subjects were randomly divided into a training set and a blind testing set. Samples were directly analyzed without prior treatment. RESULTS: The characteristic MS and MS/MS molecular profiles obtained allowed us to identify fucosidosis, aspartylglucosaminuria, GM1 gangliosidosis, Sandhoff disease, α-mannosidosis, sialidosis and mucolipidoses type II and III. CONCLUSIONS: This method, which is easily run in less than 30 minutes, is performed in a single step, and is sensitive and specific. Invaluable for clinical chemistry purposes this MALDI-TOF/TOF mass spectrometry procedure is semi-automatizable and suitable for the urinary screening of oligosacharidoses.


Assuntos
Doenças por Armazenamento dos Lisossomos/metabolismo , Oligossacarídeos/metabolismo , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos , Espectrometria de Massas em Tandem/métodos , Feminino , Humanos , Masculino
15.
Med Sci (Paris) ; 29(8-9): 785-90, 2013.
Artigo em Francês | MEDLINE | ID: mdl-24005635

RESUMO

Soon after their discovery microRNA (miRNA) emerged as central natural regulators of gene expression. Although the complex mechanisms of action and impact of miRNA on development, physiology and disease are still elusive, significant progress has been made in deciphering the roles of some miRNA in insulin secretion and action. Here we examine the close relationship existing between miRNA and glucose metabolism as well as their putative role in the pathogenesis of diabetes and their possible utility as biomarkers of this disease.


Assuntos
Diabetes Mellitus/genética , MicroRNAs/fisiologia , Diabetes Mellitus/fisiopatologia , Diabetes Mellitus Tipo 1/genética , Diabetes Mellitus Tipo 2/genética , Expressão Gênica , Regulação da Expressão Gênica , Glucose/metabolismo , Humanos , Insulina/metabolismo , Insulina/farmacologia , Secreção de Insulina , MicroRNAs/genética
16.
Cell Metab ; 18(3): 312-24, 2013 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-23850315

RESUMO

In record time, microRNAs (miRNAs) have acquired the respected stature of important natural regulators of global gene expression. Multiple studies have demonstrated that a large number of miRNAs are under the control of various metabolic stimuli, including nutrients, hormones, and cytokines. Conversely, it is now well recognized that miRNAs control metabolism, thereby generating a bidirectional functional link, which perturbs energy homeostasis in case of disconnection in the miRNA-metabolism interplay. A challenging road lies ahead for defining the role of miRNAs in the pathogenesis of diseases such as diabetes and for establishing their usefulness as new medications and clinically reliable biomarkers.


Assuntos
Metabolismo Energético , MicroRNAs/metabolismo , Biomarcadores/metabolismo , Citocinas/antagonistas & inibidores , Citocinas/genética , Citocinas/metabolismo , Diabetes Mellitus/metabolismo , Diabetes Mellitus/patologia , Hormônios/química , Hormônios/genética , Hormônios/metabolismo , Humanos
17.
Immunity ; 35(4): 536-49, 2011 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-22018470

RESUMO

Although infections with virulent pathogens often induce a strong inflammatory reaction, what drives the increased immune response to pathogens compared to nonpathogenic microbes is poorly understood. One possibility is that the immune system senses the level of threat from a microorganism and augments the response accordingly. Here, focusing on cytotoxic necrotizing factor 1 (CNF1), an Escherichia coli-derived effector molecule, we showed the host indirectly sensed the pathogen by monitoring for the effector that modified RhoGTPases. CNF1 modified Rac2, which then interacted with the innate immune adaptors IMD and Rip1-Rip2 in flies and mammalian cells, respectively, to drive an immune response. This response was protective and increased the ability of the host to restrict pathogen growth, thus defining a mechanism of effector-triggered immunity that contributes to how metazoans defend against microbes with pathogenic potential.


Assuntos
Transdução de Sinais , Proteínas rac de Ligação ao GTP/imunologia , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Ativação Enzimática , Células HEK293 , Humanos , Proteína Serina-Treonina Quinases de Interação com Receptores/metabolismo , Proteínas rac de Ligação ao GTP/metabolismo , Proteína RAC2 de Ligação ao GTP
18.
Diabetes ; 60(4): 1210-22, 2011 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-21357466

RESUMO

OBJECTIVE: Investigating the dynamics of pancreatic ß-cell mass is critical for developing strategies to treat both type 1 and type 2 diabetes. p53, a key regulator of the cell cycle and apoptosis, has mostly been a focus of investigation as a tumor suppressor. Although p53 alternative transcripts can modulate p53 activity, their functions are not fully understood. We hypothesized that ß-cell proliferation and glucose homeostasis were controlled by Δ40p53, a p53 isoform lacking the transactivation domain of the full-length protein that modulates total p53 activity and regulates organ size and life span in mice. RESEARCH DESIGN AND METHODS: We phenotyped metabolic parameters in Δ40p53 transgenic (p44tg) mice and used quantitative RT-PCR, Western blotting, and immunohistochemistry to examine ß-cell proliferation. RESULTS: Transgenic mice with an ectopic p53 gene encoding Δ40p53 developed hypoinsulinemia and glucose intolerance by 3 months of age, which worsened in older mice and led to overt diabetes and premature death from ∼14 months of age. Consistent with a dramatic decrease in ß-cell mass and reduced ß-cell proliferation, lower expression of cyclin D2 and pancreatic duodenal homeobox-1, two key regulators of proliferation, was observed, whereas expression of the cell cycle inhibitor p21, a p53 target gene, was increased. CONCLUSIONS: These data indicate a significant and novel role for Δ40p53 in ß-cell proliferation with implications for the development of age-dependent diabetes.


Assuntos
Glucose/metabolismo , Células Secretoras de Insulina/citologia , Células Secretoras de Insulina/metabolismo , Isoformas de Proteínas/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Animais , Western Blotting , Proliferação de Células , Imuno-Histoquímica , Masculino , Camundongos , Camundongos Mutantes , Isoformas de Proteínas/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Proteína Supressora de Tumor p53/genética
19.
Diabetes ; 59(4): 987-96, 2010 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-20103709

RESUMO

OBJECTIVE: A major determinant of the progression from insulin resistance to the development of overt type 2 diabetes is a failure to mount an appropriate compensatory beta-cell hyperplastic response to maintain normoglycemia. We undertook the present study to directly explore the significance of the cell cycle protein cyclin D2 in the expansion of beta-cell mass in two different models of insulin resistance. RESEARCH DESIGN AND METHODS: We created compound knockouts by crossing mice deficient in cyclin D2 (D2KO) with either the insulin receptor substrate 1 knockout (IRS1KO) mice or the insulin receptor liver-specific knockout mice (LIRKO), neither of which develops overt diabetes on its own because of robust compensatory beta-cell hyperplasia. We phenotyped the double knockouts and used RT-qPCR and immunohistochemistry to examine beta-cell mass. RESULTS: Both compound knockouts, D2KO/LIRKO and D2KO/IRS1KO, exhibited insulin resistance and hyperinsulinemia and an absence of compensatory beta-cell hyperplasia. However, the diabetic D2KO/LIRKO group rapidly succumbed early compared with a relatively normal lifespan in the glucose-intolerant D2KO/IRS1KO mice. CONCLUSIONS: This study provides direct genetic evidence that cyclin D2 is essential for the expansion of beta-cell mass in response to a spectrum of insulin resistance and points to the cell-cycle protein as a potential therapeutic target that can be harnessed for preventing and curing type 2 diabetes.


Assuntos
Ciclina D2/farmacologia , Diabetes Mellitus Experimental/genética , Hiperglicemia/genética , Resistência à Insulina/fisiologia , Células Secretoras de Insulina/patologia , Receptor de Insulina/deficiência , Animais , Ciclina D1/genética , Ciclina D2/deficiência , Ciclina D2/genética , Genótipo , Homozigoto , Hiperplasia/fisiopatologia , Fígado/fisiologia , Camundongos , Camundongos Knockout , Receptor de Insulina/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa
20.
Biochem Biophys Res Commun ; 390(4): 1278-82, 2009 Dec 25.
Artigo em Inglês | MEDLINE | ID: mdl-19883627

RESUMO

FoxO1 is a master regulator of signaling pathways used by growth factors and hormones, including insulin. Its activity is regulated by changes in subcellular localization coupled to post-translational modifications such as phosphorylation, ubiquitination, and acetylation. As microRNAs have emerged as a newly identified means by which cells fine-tune gene expression, we hypothesized that they could regulate FoxO1. Since FoxO1 plays a key role in the liver, we used immortalized neonatal mouse hepatocytes to analyze the effects of potential microRNAs targeting FoxO1. We found that miR-139 targets FoxO1 mRNA directly and reduces the level of the protein without affecting transcript levels. This decrease in FoxO1 protein results in a decrease of its target genes, such as AdQR1, AdQR2 and Mttp. Our findings suggest a novel mode of FoxO1 regulation by which miR-139 could maintain the protein level of FoxO1 to preserve homeostatic regulation of its transcriptional activity in response to environmental stimuli.


Assuntos
Fatores de Transcrição Forkhead/metabolismo , Hepatócitos/metabolismo , MicroRNAs/metabolismo , Animais , Células Cultivadas , Proteína Forkhead Box O1 , Fatores de Transcrição Forkhead/genética , Regulação da Expressão Gênica , Camundongos , MicroRNAs/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...