Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Neuroimage ; 281: 120356, 2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37703939

RESUMO

The accurate characterization of cortical functional connectivity from Magnetoencephalography (MEG) data remains a challenging problem due to the subjective nature of the analysis, which requires several decisions at each step of the analysis pipeline, such as the choice of a source estimation algorithm, a connectivity metric and a cortical parcellation, to name but a few. Recent studies have emphasized the importance of selecting the regularization parameter in minimum norm estimates with caution, as variations in its value can result in significant differences in connectivity estimates. In particular, the amount of regularization that is optimal for MEG source estimation can actually be suboptimal for coherence-based MEG connectivity analysis. In this study, we expand upon previous work by examining a broader range of commonly used connectivity metrics, including the imaginary part of coherence, corrected imaginary part of Phase Locking Value, and weighted Phase Lag Index, within a larger and more realistic simulation scenario. Our results show that the best estimate of connectivity is achieved using a regularization parameter that is 1 or 2 orders of magnitude smaller than the one that yields the best source estimation. This remarkable difference may imply that previous work assessing source-space connectivity using minimum-norm may have benefited from using less regularization, as this may have helped reduce false positives. Importantly, we provide the code for MEG data simulation and analysis, offering the research community a valuable open source tool for informed selections of the regularization parameter when using minimum-norm for source space connectivity analyses.

2.
JAMA Neurol ; 76(9): 1070-1078, 2019 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-31180505

RESUMO

IMPORTANCE: Cortical stimulation is used during presurgical epilepsy evaluation for functional mapping and for defining the cortical area responsible for seizure generation. Despite wide use of cortical stimulation, the association between cortical stimulation-induced seizures and surgical outcome remains unknown. OBJECTIVE: To assess whether removal of the seizure-onset zone resulting from cortical stimulation is associated with a good surgical outcome. DESIGN, SETTING, AND PARTICIPANTS: This cohort study used data from 2 tertiary epilepsy centers: Montreal Neurological Institute in Montreal, Quebec, Canada, and Grenoble-Alpes University Hospital in Grenoble, France. Participants included consecutive patients (n = 103) with focal drug-resistant epilepsy who underwent stereoelectroencephalography between January 1, 2007, and January 1, 2017. Participant selection criteria were cortical stimulation during implantation, subsequent open surgical procedure with a follow-up of 1 or more years, and complete neuroimaging data sets for superimposition between intracranial electrodes and the resection. MAIN OUTCOMES AND MEASURES: Cortical stimulation-induced typical electroclinical seizures, the volume of the surgical resection, and the percentage of resected electrode contacts inducing a seizure or encompassing the cortical stimulation-informed and spontaneous seizure-onset zones were identified. These measures were correlated with good (Engel class I) and poor (Engel classes II-IV) surgical outcomes. Electroclinical characteristics associated with cortical stimulation-induced seizures were analyzed. RESULTS: In total, 103 patients were included, of whom 54 (52.4%) were female, and the mean (SD) age was 31 (11) years. Fifty-nine patients (57.3%) had cortical stimulation-induced seizures. The percentage of patients with cortical stimulation-induced electroclinical seizures was higher in the good outcome group than in the poor outcome group (31 of 44 [70.5%] vs 28 of 59 [47.5%]; P = .02). The percentage of the resected contacts encompassing the cortical stimulation-informed seizure-onset zone correlated with surgical outcome (median [range] percentage in good vs poor outcome: 63.2% [0%-100%] vs 33.3% [0%-84.6%]; Spearman ρ = 0.38; P = .003). A similar result was observed for spontaneous seizures (median [range] percentage in good vs poor outcome: 57.1% [0%-100%] vs 32.7% [0%-100%]; Spearman ρ = 0.32; P = .002). Longer elapsed time since the most recent seizure was associated with a higher likelihood of inducing seizures (>24 hours: 64.7% vs <24 hours: 27.3%; P = .04). CONCLUSIONS AND RELEVANCE: Seizure induction by cortical stimulation appears to identify the epileptic generator as reliably as spontaneous seizures do; this finding might lead to a more time-efficient intracranial presurgical investigation of focal epilepsy as the need to record spontaneous seizures is reduced.

3.
Front Neurol ; 10: 94, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30804887

RESUMO

For patients with drug-resistant focal epilepsy, surgery is the therapy of choice in order to achieve seizure freedom. Epilepsy surgery foremost requires the identification of the epileptogenic zone (EZ), defined as the brain area indispensable for seizure generation. The current gold standard for identification of the EZ is the seizure-onset zone (SOZ). The fact, however that surgical outcomes are unfavorable in 40-50% of well-selected patients, suggests that the SOZ is a suboptimal biomarker of the EZ, and that new biomarkers resulting in better postsurgical outcomes are needed. Research of recent years suggested that high-frequency oscillations (HFOs) are a promising biomarker of the EZ, with a potential to improve surgical success in patients with drug-resistant epilepsy without the need to record seizures. Nonetheless, in order to establish HFOs as a clinical biomarker, the following issues need to be addressed. First, evidence on HFOs as a clinically relevant biomarker stems predominantly from retrospective assessments with visual marking, leading to problems of reproducibility and reliability. Prospective assessments of the use of HFOs for surgery planning using automatic detection of HFOs are needed in order to determine their clinical value. Second, disentangling physiologic from pathologic HFOs is still an unsolved issue. Considering the appearance and the topographic location of presumed physiologic HFOs could be immanent for the interpretation of HFO findings in a clinical context. Third, recording HFOs non-invasively via scalp electroencephalography (EEG) and magnetoencephalography (MEG) is highly desirable, as it would provide us with the possibility to translate the use of HFOs to the scalp in a large number of patients. This article reviews the literature regarding these three issues. The first part of the article focuses on the clinical value of invasively recorded HFOs in localizing the EZ, the detection of HFOs, as well as their separation from physiologic HFOs. The second part of the article focuses on the current state of the literature regarding non-invasively recorded HFOs with emphasis on findings and technical considerations regarding their localization.

4.
Clin Neurophysiol ; 128(9): 1719-1736, 2017 09.
Artigo em Inglês | MEDLINE | ID: mdl-28756348

RESUMO

OBJECTIVE: Neuroimaging studies provide evidence of disturbed resting-state brain networks in Schizophrenia (SZ). However, untangling the neuronal mechanisms that subserve these baseline alterations requires measurement of their electrophysiological underpinnings. This systematic review specifically investigates the contributions of resting-state Magnetoencephalography (MEG) in elucidating abnormal neural organization in SZ patients. METHOD: A systematic literature review of resting-state MEG studies in SZ was conducted. This literature is discussed in relation to findings from resting-state fMRI and EEG, as well as to task-based MEG research in SZ population. Importantly, methodological limitations are considered and recommendations to overcome current limitations are proposed. RESULTS: Resting-state MEG literature in SZ points towards altered local and long-range oscillatory network dynamics in various frequency bands. Critical methodological challenges with respect to experiment design, and data collection and analysis need to be taken into consideration. CONCLUSION: Spontaneous MEG data show that local and global neural organization is altered in SZ patients. MEG is a highly promising tool to fill in knowledge gaps about the neurophysiology of SZ. However, to reach its fullest potential, basic methodological challenges need to be overcome. SIGNIFICANCE: MEG-based resting-state power and connectivity findings could be great assets to clinical and translational research in psychiatry, and SZ in particular.


Assuntos
Encéfalo/fisiopatologia , Magnetoencefalografia/métodos , Rede Nervosa/fisiopatologia , Descanso/fisiologia , Esquizofrenia/fisiopatologia , Mapeamento Encefálico/métodos , Humanos , Imageamento por Ressonância Magnética/métodos , Esquizofrenia/diagnóstico
5.
Neuroimage ; 156: 29-42, 2017 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-28479475

RESUMO

Despite numerous important contributions, the investigation of brain connectivity with magnetoencephalography (MEG) still faces multiple challenges. One critical aspect of source-level connectivity, largely overlooked in the literature, is the putative effect of the choice of the inverse method on the subsequent cortico-cortical coupling analysis. We set out to investigate the impact of three inverse methods on source coherence detection using simulated MEG data. To this end, thousands of randomly located pairs of sources were created. Several parameters were manipulated, including inter- and intra-source correlation strength, source size and spatial configuration. The simulated pairs of sources were then used to generate sensor-level MEG measurements at varying signal-to-noise ratios (SNR). Next, the source level power and coherence maps were calculated using three methods (a) L2-Minimum-Norm Estimate (MNE), (b) Linearly Constrained Minimum Variance (LCMV) beamforming, and (c) Dynamic Imaging of Coherent Sources (DICS) beamforming. The performances of the methods were evaluated using Receiver Operating Characteristic (ROC) curves. The results indicate that beamformers perform better than MNE for coherence reconstructions if the interacting cortical sources consist of point-like sources. On the other hand, MNE provides better connectivity estimation than beamformers, if the interacting sources are simulated as extended cortical patches, where each patch consists of dipoles with identical time series (high intra-patch coherence). However, the performance of the beamformers for interacting patches improves substantially if each patch of active cortex is simulated with only partly coherent time series (partial intra-patch coherence). These results demonstrate that the choice of the inverse method impacts the results of MEG source-space coherence analysis, and that the optimal choice of the inverse solution depends on the spatial and synchronization profile of the interacting cortical sources. The insights revealed here can guide method selection and help improve data interpretation regarding MEG connectivity estimation.


Assuntos
Mapeamento Encefálico/métodos , Encéfalo/fisiologia , Magnetoencefalografia/métodos , Vias Neurais/fisiologia , Processamento de Sinais Assistido por Computador , Algoritmos , Simulação por Computador , Humanos , Modelos Neurológicos
6.
Front Psychiatry ; 8: 41, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28367127

RESUMO

Despite being the object of a thriving field of clinical research, the investigation of intrinsic brain network alterations in psychiatric illnesses is still in its early days. Because the pathological alterations are predominantly probed using functional magnetic resonance imaging (fMRI), many questions about the electrophysiological bases of resting-state alterations in psychiatric disorders, particularly among mood disorder patients, remain unanswered. Alongside important research using electroencephalography (EEG), the specific recent contributions and future promise of magnetoencephalography (MEG) in this field are not fully recognized and valued. Here, we provide a critical review of recent findings from MEG resting-state connectivity within major depressive disorder (MDD) and bipolar disorder (BD). The clinical MEG resting-state results are compared with those previously reported with fMRI and EEG. Taken together, MEG appears to be a promising but still critically underexploited technique to unravel the neurophysiological mechanisms that mediate abnormal (both hyper- and hypo-) connectivity patterns involved in MDD and BD. In particular, a major strength of MEG is its ability to provide source-space estimations of neuromagnetic long-range rhythmic synchronization at various frequencies (i.e., oscillatory coupling). The reviewed literature highlights the relevance of probing local and interregional rhythmic synchronization to explore the pathophysiological underpinnings of each disorder. However, before we can fully take advantage of MEG connectivity analyses in psychiatry, several limitations inherent to MEG connectivity analyses need to be understood and taken into account. Thus, we also discuss current methodological challenges and outline paths for future research. MEG resting-state studies provide an important window onto perturbed spontaneous oscillatory brain networks and hence supply an important complement to fMRI-based resting-state measurements in psychiatric populations.

7.
Comput Intell Neurosci ; 2016: 3979547, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27092179

RESUMO

Minimum Norm Estimation (MNE) is an inverse solution method widely used to reconstruct the source time series that underlie magnetoencephalography (MEG) data. MNE addresses the ill-posed nature of MEG source estimation through regularization (e.g., Tikhonov regularization). Selecting the best regularization parameter is a critical step. Generally, once set, it is common practice to keep the same coefficient throughout a study. However, it is yet to be known whether the optimal lambda for spectral power analysis of MEG source data coincides with the optimal regularization for source-level oscillatory coupling analysis. We addressed this question via extensive Monte-Carlo simulations of MEG data, where we generated 21,600 configurations of pairs of coupled sources with varying sizes, signal-to-noise ratio (SNR), and coupling strengths. Then, we searched for the Tikhonov regularization coefficients (lambda) that maximize detection performance for (a) power and (b) coherence. For coherence, the optimal lambda was two orders of magnitude smaller than the best lambda for power. Moreover, we found that the spatial extent of the interacting sources and SNR, but not the extent of coupling, were the main parameters affecting the best choice for lambda. Our findings suggest using less regularization when measuring oscillatory coupling compared to power estimation.


Assuntos
Mapeamento Encefálico/métodos , Encéfalo/fisiologia , Magnetoencefalografia/métodos , Processamento de Sinais Assistido por Computador , Algoritmos , Simulação por Computador , Humanos , Método de Monte Carlo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...