Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
Int J Mol Sci ; 23(9)2022 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-35563520

RESUMO

The interaction between tumor surface-expressed PDL1 and immune cell PD1 for the evasion of antitumor immunity is well established and is targeted by FDA-approved anti-PDL1 and anti-PD1 antibodies. Nonetheless, recent studies highlight the immunopathogenicity of tumor-intrinsic PDL1 signals that can contribute to the resistance to targeted small molecules, cytotoxic chemotherapy, and αPD1 immunotherapy. As genetic PDL1 depletion is not currently clinically tractable, we screened FDA-approved drugs to identify those that significantly deplete tumor PDL1. Among the candidates, we identified the ß-lactam cephalosporin antibiotic cefepime as a tumor PDL1-depleting drug (PDD) that increases tumor DNA damage and sensitivity to DNA-damaging agents in vitro in distinct aggressive mouse and human cancer lines, including glioblastoma multiforme, ovarian cancer, bladder cancer, and melanoma. Cefepime reduced tumor PDL1 post-translationally through ubiquitination, improved DNA-damaging-agent treatment efficacy in vivo in immune-deficient and -proficient mice, activated immunogenic tumor STING signals, and phenocopied specific genetic PDL1 depletion effects. The ß-lactam ring and its antibiotic properties did not appear contributory to PDL1 depletion or to these treatment effects, and the related cephalosporin ceftazidime produced similar effects. Our findings highlight the rapidly translated potential for PDDs to inhibit tumor-intrinsic PDL1 signals and improve DNA-damaging agents and immunotherapy efficacy.


Assuntos
Antígeno B7-H1 , Melanoma , Animais , Antígeno B7-H1/metabolismo , Cefepima/farmacologia , Ceftazidima , Dano ao DNA , Camundongos
3.
Cutis ; 107(3): E29-E36, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33956620

RESUMO

Metastatic breast cancer initially may present with cutaneous lesions. The goal of this systematic review was to evaluate available reports where the initial discovery of primary breast cancer occurred through the diagnosis of metastatic cutaneous lesions. We aimed to better understand these cases and the role of dermatologists in their diagnosis. A review of the literature for case reports and retrospective studies was conducted using the following databases: MEDLINE/PubMed, EMBASE, Cochrane library, CINAHL, and EBSCO. The PRISMA guidelines were utilized. Studies were included if they reported a cutaneous metastasis of a primary breast cancer in females. Studies were excluded if skin metastasis occurred in a patient with a history of breast cancer. Thirty-six publications were identified. Among these, 27 were case reports, and 9 were retrospective reviews. An enhanced understanding of how these cutaneous metastases present may be of clinical benefit to physicians, particularly dermatologists.


Assuntos
Neoplasias da Mama , Neoplasias Cutâneas , Neoplasias da Mama/diagnóstico , Feminino , Humanos , Estudos Retrospectivos , Neoplasias Cutâneas/diagnóstico
4.
Free Radic Biol Med ; 110: 261-269, 2017 09.
Artigo em Inglês | MEDLINE | ID: mdl-28666850

RESUMO

Previously published studies strongly suggested that insulin- and exercise-induced skeletal muscle glucose uptake require nitric oxide (NO) production. However, the signal transduction mechanisms by which insulin and contraction regulated NO production and subsequent glucose transport are not known. In the present study, we utilized the myotube cell lines treated with insulin or hydrogen peroxide, the latter to mimic contraction-induced oxidative stress, to characterize these mechanisms. We found that insulin stimulation of neuronal nitric oxide synthase (nNOS) phosphorylation, NO production, and GLUT4 translocation were all significantly reduced by inhibition of either nNOS or Akt2. Hydrogen peroxide (H2O2) induced phosphorylation of nNOS at the same residue as did insulin, and also stimulated NO production and GLUT4 translocation. nNOS inhibition prevented H2O2-induced GLUT4 translocation. AMP activated protein kinase (AMPK) inhibition prevented H2O2 activation and phosphorylation of nNOS, leading to reduced NO production and significantly attenuated GLUT4 translocation. We conclude that nNOS phosphorylation and subsequently increased NO production are required for both insulin- and H2O2-stimulated glucose transport. Although the two stimuli result in phosphorylation of the same residue on nNOS, they do so through distinct protein kinases. Thus, insulin and H2O2-activated signaling pathways converge on nNOS, which is a common mediator of glucose uptake in both pathways. However, the fact that different kinases are utilized provides a basis for the use of exercise to activate glucose transport in the face of insulin resistance.


Assuntos
Glucose/metabolismo , Peróxido de Hidrogênio/farmacologia , Insulina/farmacologia , Fibras Musculares Esqueléticas/efeitos dos fármacos , Óxido Nítrico Sintase Tipo I/genética , Proteínas Quinases Ativadas por AMP/genética , Proteínas Quinases Ativadas por AMP/metabolismo , Animais , Linhagem Celular , Regulação da Expressão Gênica , Transportador de Glucose Tipo 4/genética , Transportador de Glucose Tipo 4/metabolismo , Resistência à Insulina , Camundongos , Fibras Musculares Esqueléticas/citologia , Fibras Musculares Esqueléticas/metabolismo , Óxido Nítrico/biossíntese , Óxido Nítrico Sintase Tipo I/metabolismo , Estresse Oxidativo , Fosforilação , Transporte Proteico , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais
5.
Biochem Biophys Res Commun ; 435(3): 501-5, 2013 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-23680665

RESUMO

Type 2 Diabetes (T2DM) is the seventh leading cause of death in the United States, and is quickly becoming a global pandemic. T2DM results from reduced insulin sensitivity coupled with a relative failure of insulin secretion. Reduced insulin sensitivity has been associated with reduced nitric oxide synthase (NOS) activity and impaired glucose uptake in T2DM skeletal muscle. Upon insulin stimulation, NO synthesis increases in normal adult skeletal muscle, whereas no such increase is observed in T2DM adults. Endothelial NOS is activated by phosphorylation in the C-terminal tail in response to insulin. Neuronal NOS (nNOS), the primary NOS isoform in skeletal muscle, contains a homologous phosphorylation site, raising the possibility that nNOS, too, may undergo an activating phosphorylation event upon insulin treatment. Yet it remains unknown if or how nNOS is regulated by insulin in skeletal muscle. Data shown herein indicate that nNOS is phosphorylated in response to insulin in skeletal muscle and that this phosphorylation event occurs rapidly in C2C12 myotubes, resulting in increased NO production. In vivo phosphorylation of nNOS was also observed in response to insulin in mouse skeletal muscle. These results indicate, for the first time, that nNOS is phosphorylated in skeletal muscle in response to insulin and in association with increased NO production.


Assuntos
Insulina/metabolismo , Músculo Esquelético/metabolismo , Óxido Nítrico Sintase Tipo I/metabolismo , Animais , Linhagem Celular , Diabetes Mellitus Tipo 2/enzimologia , Diabetes Mellitus Tipo 2/metabolismo , Insulina/farmacologia , Resistência à Insulina , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Fibras Musculares Esqueléticas/efeitos dos fármacos , Fibras Musculares Esqueléticas/metabolismo , Músculo Esquelético/efeitos dos fármacos , Músculo Esquelético/enzimologia , Óxido Nítrico/biossíntese , Óxido Nítrico Sintase Tipo I/química , Fosforilação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...