Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
J Plankton Res ; 45(4): 677-692, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37483906

RESUMO

Mesoscale oceanographic features influence the composition of zooplankton. Cyclonic eddies can promote upwelling and production of gelatinous zooplankton, which play critical roles in ocean biogeochemical cycling. We examined variation in assemblages of thaliaceans (salps, doliolids and pyrosomes) among mesoscale oceanographic features at the tropical-temperate boundary of the East Australian Current (EAC) in Spring 2019 and Autumn 2021. The influence of cyclonic eddies was examined in a large offshore cyclonic eddy in 2019 and a newly formed frontal eddy in 2021. Pyrosomes were most abundant in the offshore EAC jet, and salps and doliolids were most abundant in coastal features, including within eddies that were transported offshore. In 2019, Salpa fusiformis increased 4-fold over 8 days in the large cyclonic eddy, and in 2021, doliolids increased > 50-fold over 2 weeks in a chlorophyll-rich coastal eddy while abundances of other thaliaceans remained unchanged or decreased. Correlations between abundances of thaliaceans and chlorophyll-a concentrations across the 102 samples collected during both voyages revealed that doliolids occupy a wider range of chlorophyll-a concentrations than salps. Our observations indicate that doliolids thrive in productive shelf environments, salps occur in less productive shelf waters and pyrosomes are most abundant in oligotrophic waters of the south Coral Sea.

3.
Sci Data ; 9(1): 423, 2022 07 19.
Artigo em Inglês | MEDLINE | ID: mdl-35853904

RESUMO

Knowing the distribution of fish larvae can inform fisheries science and resource management in several ways, by: 1) providing information on spawning areas; 2) identifying key areas to manage and conserve; and 3) helping to understand how fish populations are affected by anthropogenic pressures, such as overfishing and climate change. With the expansion of industrial fishing activity after 1945, there was increased sampling of fish larvae to help better understand variation in fish stocks. However, large-scale larval records are rare and often unavailable. Here we digitize data from Nishikawa et al. (1985), which were collected from 1956-1981 and are near-global (50°N-50°S), seasonal distribution maps of fish larvae of 18 mainly commercial pelagic taxa of the families Scombridae, Xiphiidae, Istiophoridae, Scombrolabracidae, and Scomberesocidae. Data were collected from the Pacific, Atlantic, and Indian Oceans. We present four seasonal 1° × 1° resolution maps per taxa representing larval abundance per grid cell and highlight some of the main patterns. Data are made available as delimited text, raster, and vector files.


Assuntos
Pesqueiros , Atum , Animais , Mudança Climática , Conservação dos Recursos Naturais , Peixes , Larva
4.
PLoS One ; 13(3): e0193932, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29513746

RESUMO

Benthic fauna play a crucial role in organic matter decomposition and nutrient cycling at the sediment-water boundary in aquatic ecosystems. In terrestrial systems, grazing herbivores have been shown to influence below-ground communities through alterations to plant distribution and composition, however whether similar cascading effects occur in aquatic systems is unknown. Here, we assess the relationship between benthic invertebrates and above-ground fish grazing across the 'grazing halos' of Heron Island lagoon, Australia. Grazing halos, which occur around patch reefs globally, are caused by removal of seagrass or benthic macroalgae by herbivorous fish that results in distinct bands of unvegetated sediments surrounding patch reefs. We found that benthic algal canopy height significantly increased with distance from patch reef, and that algal canopy height was positively correlated with the abundances of only one invertebrate taxon (Nematoda). Both sediment carbon to nitrogen ratios (C:N) and mean sediment particle size (µm) demonstrated a positive correlation with Nematoda and Arthropoda (predominantly copepod) abundances, respectively. These positive correlations indicate that environmental conditions are a major contributor to benthic invertebrate community distribution, acting on benthic communities in conjunction with the cascading effects of above-ground algal grazing. These results suggest that benthic communities, and the ecosystem functions they perform in this system, may be less responsive to changes in above-ground herbivorous processes than those previously studied in terrestrial systems. Understanding how above-ground organisms, and processes, affect their benthic invertebrate counterparts can shed light on how changes in aquatic communities may affect ecosystem function in previously unknown ways.


Assuntos
Biota , Recifes de Corais , Peixes/fisiologia , Herbivoria , Invertebrados/fisiologia , Alga Marinha , Animais , Austrália , Biota/fisiologia , Carbono/análise , Ecossistema , Comportamento Alimentar , Sedimentos Geológicos/análise , Nitrogênio/análise , Tamanho da Partícula
5.
Glob Chang Biol ; 24(1): e128-e138, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-28850765

RESUMO

The composition of local ecological communities is determined by the members of the regional community that are able to survive the abiotic and biotic conditions of a local ecosystem. Anthropogenic activities since the industrial revolution have increased atmospheric CO2 concentrations, which have in turn decreased ocean pH and altered carbonate ion concentrations: so called ocean acidification (OA). Single-species experiments have shown how OA can dramatically affect zooplankton development, physiology and skeletal mineralization status, potentially reducing their defensive function and altering their predatory and antipredatory behaviors. This means that increased OA may indirectly alter the biotic conditions by modifying trophic interactions. We investigated how OA affects the impact of a cubozoan predator on their zooplankton prey, predominantly Copepoda, Pleocyemata, Dendrobranchiata, and Amphipoda. Experimental conditions were set at either current (pCO2 370 µatm) or end-of-the-century OA (pCO2 1,100 µatm) scenarios, crossed in an orthogonal experimental design with the presence/absence of the cubozoan predator Carybdea rastoni. The combined effects of exposure to OA and predation by C. rastoni caused greater shifts in community structure, and greater reductions in the abundance of key taxa than would be predicted from combining the effect of each stressor in isolation. Specifically, we show that in the combined presence of OA and a cubozoan predator, populations of the most abundant member of the zooplankton community (calanoid copepods) were reduced 27% more than it would be predicted based on the effects of these stressors in isolation, suggesting that OA increases the susceptibility of plankton to predation. Our results indicate that the ecological consequences of OA may be greater than predicted from single-species experiments, and highlight the need to understand future marine global change from a community perspective.


Assuntos
Dióxido de Carbono/química , Cubomedusas/fisiologia , Comportamento Predatório/fisiologia , Água do Mar/química , Zooplâncton/fisiologia , Animais , Cadeia Alimentar , Concentração de Íons de Hidrogênio
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...