Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Neurotherapeutics ; 21(2): e00326, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38301326

RESUMO

Intraventricular hemorrhage (IVH) is an important cause of long-term disability in extremely preterm infants, with no current treatment. This study assessed the potential neuroprotective effects of cannabidiol (CBD) in an IVH model using immature rats. IVH was induced in 1-day-old (P1) Wistar rats by left periventricular injection of Clostridial collagenase. Some rats received CBD prenatally (10 â€‹mg/kg i.p. to the dam) and then 5 â€‹mg/kg i.p. 6, 30 and 54 â€‹h after IVH (IVH+CBD, n â€‹= â€‹30). Other IVH rats received vehicle (IVH+VEH, n â€‹= â€‹34) and vehicle-treated non-IVH rats served as controls (SHM, n â€‹= â€‹29). Rats were humanely killed at P6, P14 or P45. Brain damage (motor and memory performance, area of damage, Lactate/N-acetylaspartate ratio), white matter injury (ipsilateral hemisphere and corpus callosum volume, oligodendroglial cell density and myelin basic protein signal), blood-brain barrier (BBB) integrity (Mfsd2a, occludin and MMP9 expression, gadolinium leakage), inflammation (TLR4, NFκB and TNFα expression, infiltration of pro-inflammatory cells), excitotoxicity (Glutamate/N-acetylspartate ratio) and oxidative stress (protein nitrosylation) were then evaluated. CBD prevented the long-lasting motor and cognitive consequences of IVH, reduced brain damage in the short- and long-term, protected oligodendroglial cells preserving adequate myelination and maintained BBB integrity. The protective effects of CBD were associated with the modulation of inflammation, excitotoxicity and oxidative stress. In conclusion, in immature rats, CBD reduced IVH-induced brain damage and its short- and long-term consequences, showing robust and pleiotropic neuroprotective effects. CBD is a potential candidate to ameliorate IVH-induced immature brain damage.


Assuntos
Lesões Encefálicas , Canabidiol , Fármacos Neuroprotetores , Humanos , Recém-Nascido , Animais , Ratos , Barreira Hematoencefálica , Canabidiol/farmacologia , Canabidiol/uso terapêutico , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/uso terapêutico , Recém-Nascido Prematuro/metabolismo , Ratos Wistar , Hemorragia Cerebral/complicações , Hemorragia Cerebral/tratamento farmacológico , Hemorragia Cerebral/metabolismo , Lesões Encefálicas/tratamento farmacológico , Lesões Encefálicas/etiologia , Inflamação , Modelos Animais de Doenças
2.
eNeuro ; 10(5)2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37072177

RESUMO

Therapeutic hypothermia is well established as a standard treatment for infants with hypoxic-ischemic (HI) encephalopathy but it is only partially effective. The potential for combination treatments to augment hypothermic neuroprotection has major relevance. Our aim was to assess the effects of treating newborn rats following HI injury with cannabidiol (CBD) at 0.1 or 1 mg/kg, i.p., in normothermic (37.5°C) and hypothermic (32.0°C) conditions, from 7 d of age (neonatal phase) to 37 d of age (juvenile phase). Placebo or CBD was administered at 0.5, 24, and 48 h after HI injury. Two sensorimotor (rotarod and cylinder rearing) and two cognitive (novel object recognition and T-maze) tests were conducted 30 d after HI. The extent of brain damage was determined by magnetic resonance imaging, histologic evaluation, magnetic resonance spectroscopy, amplitude-integrated electroencephalography, and Western blotting. At 37 d, the HI insult produced impairments in all neurobehavioral scores (cognitive and sensorimotor tests), brain activity (electroencephalography), neuropathological score (temporoparietal cortexes and CA1 layer of hippocampus), lesion volume, magnetic resonance biomarkers of brain injury (metabolic dysfunction, excitotoxicity, neural damage, and mitochondrial impairment), oxidative stress, and inflammation (TNFα). We observed that CBD or hypothermia (to a lesser extent than CBD) alone improved cognitive and motor functions, as well as brain activity. When used together, CBD and hypothermia ameliorated brain excitotoxicity, oxidative stress, and inflammation, reduced brain infarct volume, lessened the extent of histologic damage, and demonstrated additivity in some parameters. Thus, coadministration of CBD and hypothermia could complement each other in their specific mechanisms to provide neuroprotection.


Assuntos
Lesões Encefálicas , Canabidiol , Hipotermia , Hipóxia-Isquemia Encefálica , Fármacos Neuroprotetores , Animais , Ratos , Animais Recém-Nascidos , Canabidiol/farmacologia , Hipotermia/tratamento farmacológico , Hipóxia-Isquemia Encefálica/terapia , Inflamação/tratamento farmacológico , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/uso terapêutico
3.
Front Pediatr ; 10: 862035, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35733813

RESUMO

Aim: To assess the effects of cannabidiol (CBD) on lung damage in a piglet model of meconium aspiration syndrome (MAS). Materials and Methods: Meconium aspiration syndrome was modelled in newborn piglets via intratracheal instillation of 20% meconium in saline collected from healthy newborn humans. Piglets were treated i.v. with 5 mg/kg CBD (MAS + CBD) or Vehicle (MAS + VEH) 30 min after MAS induction and monitored for 6 h. Ventilated piglets without meconium instillation served as controls (CTL). Ventilatory and haemodynamic monitoring, histological and biochemical studies assessed the effects of treatment. Results: Post-insult administration of CBD reduced MAS-induced deterioration of gas exchange, improving respiratory acidosis (final pH 7.38 ± 0.02, 7.22 ± 0.03 and 7.33 ± 0.03 and final pCO2 39.8 ± 1.3, 60.4 ± 3.8 and 45.7 ± 3.1 mmHg for CTL, MAS + VEH and MAS + CBD, respectively, p < 0.05). These beneficial effects were obtained despite the less aggressive ventilatory settings required for CBD-treated animals (final minute volume 230 ± 30, 348 ± 33 and 253 ± 24 mL/kg/min and final Oxygenation Index 1.64 ± 0.04, 12.57 ± 3.10 and 7.42 ± 2.07 mmHg for CTL, MAS + VEH and MAS + CBD, respectively, p < 0.05). CBD's beneficial effects on gas exchange were associated with reduced histological lung damage, reduced leucocyte infiltration and oedema (histopathological score 1.6 ± 0.3, 8.6 ± 1.4 and 4.6 ± 0.7 points for CTL, MAS + VEH and MAS + CBD, respectively, p < 0.05), as well as reduced TNFα production (0.04 ± 0.01, 0.34 ± 0.06 and 0.12 ± 0.02 A.U. for CTL, MAS + VEH and MAS + CBD, respectively, p < 0.05). Moreover, CBD improved blood pressure stability (final mean blood pressure 74.5 ± 0.2, 62.2 ± 6.2, and 78.67 ± 4.1 mmHg for CTL, MAS + VEH and MAS + CBD, respectively, p < 0.05). Conclusion: Cannabidiol reduces histologic lung damage and inflammation in a piglet model of MAS. This translates into improved gas exchange and blood pressure stability.

4.
Molecules ; 27(6)2022 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-35335126

RESUMO

The innate immune response to bacterial and viral molecules involves the coordinated production of cytokines, chemokines, and type I interferons (IFNs), which is orchestrated by toll-like receptors (TLRs). TLRs, and their intracellular signalling intermediates, are closely associated with multiple sclerosis (MS) pathogenesis. Recent data from our laboratory reported that the plant-derived cannabinoids, Δ9-tetrahydrocannabinol (THC) and cannabidiol (CBD), regulate viral and bacterial inflammatory signalling pathways controlled by TLR3 and TLR4 in macrophages. The aim of this study was to assess the impact of THC and CBD, when delivered in isolation and in combination (1:1), on TLR3- and TLR4-dependent signalling in peripheral blood mononuclear cells (PBMCs) from people with MS (pwMS; n = 21) and healthy controls (HCs; n = 26). We employed the use of poly(I:C) and lipopolysaccharide (LPS) to induce viral TLR3 and bacterial TLR4 signalling, and PBMCs were pre-exposed to plant-derived highly purified THC (10 µM), CBD (10 µM), or a combination of both phytocannabinoids (1:1 ratio, 10:10 µM), prior to LPS/poly(I:C) exposure. TLR3 stimulation promoted the protein expression of the chemokine CXCL10 and the type I IFN-ß in PBMCs from both cohorts. THC and CBD (delivered in 1:1 combination at 10 µM) attenuated TLR3-induced CXCL10 and IFN-ß protein expression in PBMCs from pwMS and HCs, and this effect was not seen consistently when THC and CBD were delivered alone. In terms of LPS, TLR4 activation promoted TNF-α expression in PBMCs from both cohorts, and, interestingly, CBD when delivered alone at 10 µM, and in combination with THC (in 1:1 combination at 10 µM), exacerbated TLR4-induced TNF-α protein expression in PBMCs from pwMS and HCs. THC and CBD displayed no evidence of toxicity in primary PBMCs. No significant alteration in the relative expression of TLR3 and TLR4 mRNA, or components of the endocannabinoid system, including the cannabinoid receptor CB1 (encoded by CNR1 gene) and CB2 (encoded by CNR2 gene), and endocannabinoid metabolising enzymes, fatty acid amide hydrolase (FAAH) and monoacylglycerol lipase (MGLL), was determined in PBMCs from pwMS versus HCs. Given their role in inflammation, TLRs are clinical targets, and data herein identify CBD and THC as TLR3 and TLR4 modulating drugs in primary immune cells in vitro. This offers insight on the cellular target(s) of phytocannabinoids in targeting inflammation in the context of MS.


Assuntos
Canabidiol , Esclerose Múltipla , Receptor 3 Toll-Like/metabolismo , Receptor 4 Toll-Like/metabolismo , Canabidiol/farmacologia , Dronabinol/farmacologia , Humanos , Leucócitos Mononucleares , Esclerose Múltipla/tratamento farmacológico
5.
Br J Pharmacol ; 178(5): 1149-1163, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33347604

RESUMO

BACKGROUND AND PURPOSE: Cannabidiol (CBD) has been shown to differentially regulate the mechanistic target of rapamycin complex 1 (mTORC1) in preclinical models of disease, where it reduces activity in models of epilepsies and cancer and increases it in models of multiple sclerosis (MS) and psychosis. Here, we investigate the effects of phytocannabinoids on mTORC1 and define a molecular mechanism. EXPERIMENTAL APPROACH: A novel mechanism for phytocannabinoids was identified using the tractable model system, Dictyostelium discoideum. Using mouse embryonic fibroblasts, we further validate this new mechanism of action. We demonstrate clinical relevance using cells derived from healthy individuals and from people with MS (pwMS). KEY RESULTS: Both CBD and the more abundant cannabigerol (CBG) enhance mTORC1 activity in D. discoideum. We identify a mechanism for this effect involving inositol polyphosphate multikinase (IPMK), where elevated IPMK expression reverses the response to phytocannabinoids, decreasing mTORC1 activity upon treatment, providing new insight on phytocannabinoids' actions. We further validated this mechanism using mouse embryonic fibroblasts. Clinical relevance of this effect was shown in primary human peripheral blood mononuclear cells, where CBD and CBG treatment increased mTORC1 activity in cells derived from healthy individuals and decreased mTORC1 activity in cells derived from pwMS. CONCLUSION AND IMPLICATIONS: Our findings suggest that both CBD and the abundant CBG differentially regulate mTORC1 signalling through a mechanism dependent on the activity of the upstream IPMK signalling pathway, with potential relevance to the treatment of mTOR-related disorders, including MS.


Assuntos
Canabinoides/farmacologia , Alvo Mecanístico do Complexo 1 de Rapamicina , Fosfotransferases (Aceptor do Grupo Álcool) , Animais , Células Cultivadas , Fibroblastos , Leucócitos Mononucleares , Camundongos
6.
J Neuroimmunol ; 343: 577217, 2020 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-32244040

RESUMO

Toll-like receptors (TLRs) are sensors of pathogen-associated molecules that trigger inflammatory signalling in innate immune cells including macrophages. All TLRs, with the exception of TLR3, promote intracellular signalling via recruitment of the myeloid differentiation factor 88 (MyD88) adaptor, while TLR3 signals via Toll-Interleukin-1 Receptor (TIR)-domain-containing adaptor-inducing interferon (IFN)-ß (TRIF) adaptor to induce MyD88-independent signalling. Furthermore, TLR4 can activate both MyD88-dependent and -independent signalling (via TRIF). The study aim was to decipher the impact of the highly purified plant-derived (phyto) cannabinoids Δ9-tetrahydrocannabinol (THC) and cannabidiol (CBD), when delivered in isolation and in combination (1:1), on MyD88-dependent and -independent signalling in macrophages. We employed the use of the viral dsRNA mimetic poly(I:C) and endotoxin lipopolysaccharide (LPS), to induce viral TLR3 and bacterial TLR4 signalling in human Tamm-Horsfall protein-1 (THP-1)-derived macrophages, respectively. TLR3/TLR4 stimulation promoted the activation of interferon (IFN) regulatory factor 3 (IRF3) and TLR4 promoted the activation of nuclear factor (NF)-κB signalling, with downstream production of the type I IFN-ß, the chemokines CXCL10 and CXCL8, and cytokine TNF-α. THC and CBD (both at 10 µM) attenuated TLR3/4-induced IRF3 activation and induction of CXCL10/IFN-ß, while both phytocannabinoids failed to impact TLR4-induced IκB-α degradation and TNF-α/CXCL8 expression. The role of CB1, CB2 and PPARγ receptors in mediating the effect of THC and CBD on MyD88-independent signalling was investigated. TLRs are attractive therapeutic targets given their role in inflammation and initiation of adaptive immunity, and data herein indicate that both CBD and THC preferentially modulate TLR3 and TLR4 signalling via MyD88-independent mechanisms in macrophages. This offers mechanistic insight into the role of phytocannabinoids in modulating cellular inflammation.


Assuntos
Canabidiol/farmacologia , Dronabinol/farmacologia , Macrófagos/efeitos dos fármacos , Transdução de Sinais/imunologia , Receptor 3 Toll-Like/efeitos dos fármacos , Receptor 4 Toll-Like/efeitos dos fármacos , Linhagem Celular , Humanos , Inflamação/imunologia , Inflamação/metabolismo , Macrófagos/imunologia , Macrófagos/metabolismo , Fator 88 de Diferenciação Mieloide/efeitos dos fármacos , Fator 88 de Diferenciação Mieloide/imunologia , Fator 88 de Diferenciação Mieloide/metabolismo , Transdução de Sinais/efeitos dos fármacos , Receptor 3 Toll-Like/imunologia , Receptor 3 Toll-Like/metabolismo , Receptor 4 Toll-Like/imunologia , Receptor 4 Toll-Like/metabolismo
7.
Front Pharmacol ; 10: 1131, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31611802

RESUMO

Neonatal hypoxia-ischemia (HI) is a risk factor for myelination disturbances, a key factor for cerebral palsy. Cannabidiol (CBD) protects neurons and glial cells after HI insult in newborn animals. We hereby aimed to study CBD's effects on long-lasting HI-induced myelination deficits in newborn rats. Thus, P7 Wistar rats received s.c. vehicle (HV) or cannabidiol (HC) after HI brain damage (left carotid artery electrocoagulation plus 10% O2 for 112 min). Controls were non-HI pups. At P37, neurobehavioral tests were performed and immunohistochemistry [quantifying mature oligodendrocyte (mOL) populations and myelin basic protein (MBP) density] and electron microscopy (determining axon number, size, and myelin thickness) studies were conducted in cortex (CX) and white matter (WM). Expression of brain-derived neurotrophic factor (BDNF) and glial-derived neurotrophic factor (GDNF) were analyzed by western blot at P14. HI reduced mOL or MBP in CX but not in WM. In both CX and WM, axon density and myelin thickness were reduced. MBP impairment correlated with functional deficits. CBD administration resulted in normal function associated with normal mOL and MBP, as well as normal axon density and myelin thickness in all areas. CBD's effects were not associated with increased BDNF or GDNF expression. In conclusion, HI injury in newborn rats resulted in long-lasting myelination disturbance, associated with functional impairment. CBD treatment preserved function and myelination, likely as a part of a general neuroprotective effect.

8.
Neuropharmacology ; 146: 1-11, 2019 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-30468796

RESUMO

OBJECTIVE: Hypothermia, the gold standard after a hypoxic-ischemic insult, is not beneficial in all treated newborns. Cannabidiol is neuroprotective in animal models of newborn hypoxic-ischemic encephalopathy. This study compared the relative efficacies of cannabidiol and hypothermia in newborn hypoxic-ischemic piglets and assessed whether addition of cannabidiol augments hypothermic neuroprotection. METHODS: One day-old HI (carotid clamp and FiO2 10% for 20 min) piglets were randomized to vehicle or cannabidiol 1 mg/kg i.v. u.i.d. for three doses after being submitted to normothermia or 48 h-long hypothermia with a subsequent rewarming period of 6 h. Non-manipulated piglets (naïve) served as controls. Hemodynamic or respiratory parameters as well as brain activity (aEEG amplitude) were monitored throughout the experiment. Following termination, brains were obtained for histological (TUNEL staining, apoptosis; immunohistochemistry for Iba-1, microglia), biochemical (protein carbonylation, oxidative stress; and TNFα concentration, neuroinflammation) or proton magnetic resonance spectroscopy (Lac/NAA: metabolic derangement; Glu/NAA: excitotoxicity). RESULTS: HI led to sustained depressed brain activity and increased microglial activation, which was significantly improved by cannabidiol alone or with hypothermia but not by hypothermia alone. Hypoxic-ischemic-induced increases in Lac/NAA, Glu/NAA, TNFα or apoptosis were not reversed by either hypothermia or cannabidiol alone, but combination of the therapies did. No treatment modified the effects of HI on oxidative stress or astroglial activation. Cannabidiol treatment was well tolerated. CONCLUSIONS: cannabidiol administration after hypoxia-ischemia in piglets offers some neuroprotective effects but the combination of cannabidiol and hypothermia shows some additive effect leading to more complete neuroprotection than cannabidiol or hypothermia alone.


Assuntos
Canabidiol/farmacologia , Hipotermia/fisiopatologia , Hipóxia-Isquemia Encefálica/prevenção & controle , Hipóxia-Isquemia Encefálica/terapia , Fármacos Neuroprotetores/farmacocinética , Animais , Animais Recém-Nascidos , Apoptose/efeitos dos fármacos , Asfixia/induzido quimicamente , Encéfalo/patologia , Lesões Encefálicas , Canabidiol/farmacocinética , Modelos Animais de Doenças , Quimioterapia Combinada , Hemodinâmica/efeitos dos fármacos , Hipotermia/induzido quimicamente , Hipotermia Induzida , Inflamação , Microglia/efeitos dos fármacos , Neuroproteção , Fenômenos Fisiológicos Respiratórios/efeitos dos fármacos , Suínos
9.
Pediatr Res ; 82(1): 79-86, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-28388598

RESUMO

BackgroundBrain hypoxic-ischemic (HI) damage induces distant inflammatory lung damage in newborn pigs. We aimed to investigate the effects of cannabidiol (CBD) on lung damage in this scenario.MethodsNewborn piglets received intravenous vehicle, CBD, or CBD+WAY100635 (5-HT1A receptor antagonist) after HI brain damage (carotid flow interruption and FiO2 0.10 for 30 min). Total lung compliance (TLC), oxygenation index (OI), and extravascular lung water content (EVLW) were monitored for 6 h. Histological damage, interleukin (IL)-1ß concentration, and oxidative stress were assessed in brain and lung tissue. Total protein content was determined in bronchoalveolar lavage fluid (BALF).ResultsCBD prevented HI-induced deleterious effects on TLC and OI and reduced lung histological damage, modulating inflammation (decreased leukocyte infiltration and IL-1 concentration) and reducing protein content in BALF and EVLW. These effects were related to CBD-induced anti-inflammatory changes in the brain. HI did not increase oxidative stress in the lungs. In the lungs, WAY100635 blunted the beneficial effects of CBD on histological damage, IL-1 concentration, and EVLW.ConclusionsCBD reduced brain HI-induced distant lung damage, with 5-HT1A receptor involvement in these effects. Whether the effects of CBD on the lungs were due to the anti-inflammatory effects on the brain or due to the direct effects on the lungs remains to be elucidated.


Assuntos
Canabidiol/farmacologia , Hipóxia-Isquemia Encefálica/patologia , Lesão Pulmonar/tratamento farmacológico , Pulmão/efeitos dos fármacos , Animais , Animais Recém-Nascidos , Encéfalo/efeitos dos fármacos , Líquido da Lavagem Broncoalveolar , Modelos Animais de Doenças , Hemodinâmica , Hipóxia/metabolismo , Inflamação/tratamento farmacológico , Interleucina-1beta/metabolismo , Pulmão/fisiopatologia , Masculino , Estresse Oxidativo , Oxigênio/metabolismo , Suínos
10.
Pharmacol Res ; 113(Pt A): 356-363, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27633407

RESUMO

The endocannabinoid anandamide (AEA) causes vasorelaxation in animal studies. Although circulating AEA levels are increased in many pathologies, little is known about its vascular effects in humans. The aim of this work was to characterise the effects of AEA in human arteries. Ethical approval was granted to obtain mesenteric arteries from patients (n=31) undergoing bowel resection. Wire myography was used to probe the effects and mechanisms of action of AEA. RT-PCR was used to confirm the presence of receptor mRNA in human aortic endothelial cells (HAECs) and intracellular signalling proteins were measured using multiplex technology. AEA caused vasorelaxation of precontracted human mesenteric arteries with an Rmax of ∼30%. A synthetic CB1 agonist (CP55940) caused greater vasorelaxation (Rmax ∼60%) while a CB2 receptor agonist (HU308) had no effect on vascular tone. AEA-induced vasorelaxation was inhibited by removing the endothelium, inhibition of nitric oxide (NO) synthase, antagonising the CB1 receptor and antagonising the proposed novel endothelial cannabinoid receptor (CBe). AEA-induced vasorelaxation was not affected by CB2 antagonism, by depleting sensory neurotransmitters, or inhibiting cyclooxygenase activity. RT-PCR showed CB1 but not CB2 receptors were present in HAECs, and AEA and CP55940 had similar profiles in HAECs (increased phosphorylation of JNK, NFκB, ERK, Akt, p70s6K, STAT3 and STAT5). Post hoc analysis of the data set showed that overweight patients and those taking paracetamol had reduced vasorelaxant responses to AEA. These data show that AEA causes moderate endothelium-dependent, NO-dependent vasorelaxation in human mesenteric arteries via activation of CB1 receptors.


Assuntos
Ácidos Araquidônicos/farmacologia , Endocanabinoides/farmacologia , Artérias Mesentéricas/efeitos dos fármacos , Alcamidas Poli-Insaturadas/farmacologia , Vasodilatação/efeitos dos fármacos , Adulto , Idoso , Idoso de 80 Anos ou mais , Aorta/efeitos dos fármacos , Canabinoides/farmacologia , Cicloexanóis , Células Endoteliais/efeitos dos fármacos , Endotélio Vascular/metabolismo , Feminino , Humanos , Peptídeos e Proteínas de Sinalização Intracelular , Masculino , Artérias Mesentéricas/metabolismo , Pessoa de Meia-Idade , Óxido Nítrico/metabolismo , RNA Mensageiro/metabolismo , Receptor CB1 de Canabinoide/metabolismo , Receptor CB2 de Canabinoide/metabolismo
11.
Br J Pharmacol ; 173(5): 815-25, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26497782

RESUMO

BACKGROUND AND PURPOSE: In vivo and in vitro studies have demonstrated a protective effect of cannabidiol (CBD) in reducing infarct size in stroke models and against epithelial barrier damage in numerous disease models. We aimed to investigate whether CBD also affects blood-brain barrier (BBB) permeability following ischaemia. EXPERIMENTAL APPROACH: Human brain microvascular endothelial cell (HBMEC) and human astrocyte co-cultures modelled the BBB. Ischaemia was modelled by oxygen-glucose deprivation (OGD) and permeability was measured by transepithelial electrical resistance. KEY RESULTS: CBD (10 µM) prevented the increase in permeability caused by 4 h OGD. CBD was most effective when administered before the OGD, but protective effects were observed up to 2 h into reperfusion. This protective effect was inhibited by a PPARγ antagonist and partly reduced by a 5-HT1A receptor antagonist, but was unaffected by antagonists of cannabinoid CB1 or CB2 receptors, TRPV1 channels or adenosine A2A receptors. CBD also reduced cell damage, as measured by LDH release and by markers of cellular adhesion, such as the adhesion molecule VCAM-1. In HBMEC monocultures, CBD decreased VCAM-1 and increased VEGF levels, effects which were inhibited by PPARγ antagonism. CONCLUSIONS AND IMPLICATIONS: These data suggest that preventing permeability changes at the BBB could represent an as yet unrecognized mechanism of CBD-induced neuroprotection in ischaemic stroke, a mechanism mediated by activation of PPARγ and 5-HT1A receptors.


Assuntos
Barreira Hematoencefálica/efeitos dos fármacos , Canabidiol/farmacologia , Fármacos Neuroprotetores/farmacologia , PPAR gama/metabolismo , Receptor 5-HT1A de Serotonina/metabolismo , Astrócitos/efeitos dos fármacos , Astrócitos/metabolismo , Barreira Hematoencefálica/metabolismo , Isquemia Encefálica/metabolismo , Hipóxia Celular , Células Cultivadas , Técnicas de Cocultura , Células Endoteliais/efeitos dos fármacos , Células Endoteliais/metabolismo , Glucose/deficiência , Humanos , Permeabilidade/efeitos dos fármacos , Molécula 1 de Adesão de Célula Vascular/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo
12.
Cardiovasc Res ; 107(4): 568-78, 2015 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-26092099

RESUMO

AIMS: The protective effects of cannabidiol (CBD) have been widely shown in preclinical models and have translated into medicines for the treatment of multiple sclerosis and epilepsy. However, the direct vascular effects of CBD in humans are unknown. METHODS AND RESULTS: Using wire myography, the vascular effects of CBD were assessed in human mesenteric arteries, and the mechanisms of action probed pharmacologically. CBD-induced intracellular signalling was characterized using human aortic endothelial cells (HAECs). CBD caused acute, non-recoverable vasorelaxation of human mesenteric arteries with an Rmax of ∼ 40%. This was inhibited by cannabinoid receptor 1 (CB1) receptor antagonists, desensitization of transient receptor potential channels using capsaicin, removal of the endothelium, and inhibition of potassium efflux. There was no role for cannabinoid receptor-2 (CB2) receptor, peroxisome proliferator activated receptor (PPAR)γ, the novel endothelial cannabinoid receptor (CBe), or cyclooxygenase. CBD-induced vasorelaxation was blunted in males, and in patients with type 2 diabetes or hypercholesterolemia. In HAECs, CBD significantly reduced phosphorylated JNK, NFκB, p70s6 K and STAT5, and significantly increased phosphorylated CREB, ERK1/2, and Akt levels. CBD also increased phosphorylated eNOS (ser1177), which was correlated with increased levels of ERK1/2 and Akt levels. CB1 receptor antagonism prevented the increase in eNOS phosphorylation. CONCLUSION: This study shows, for the first time, that CBD causes vasorelaxation of human mesenteric arteries via activation of CB1 and TRP channels, and is endothelium- and nitric oxide-dependent.


Assuntos
Canabidiol/farmacologia , Endotélio Vascular/efeitos dos fármacos , Artérias Mesentéricas/efeitos dos fármacos , Receptor CB1 de Canabinoide/metabolismo , Vasodilatação/efeitos dos fármacos , Adulto , Idoso , Idoso de 80 Anos ou mais , Endotélio Vascular/metabolismo , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Esclerose Múltipla/tratamento farmacológico , Óxido Nítrico/metabolismo , Vasodilatadores/farmacologia
13.
Br J Pharmacol ; 172(12): 3015-27, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25651941

RESUMO

BACKGROUND AND PURPOSE: Endocannabinoids alter permeability at various epithelial barriers, and cannabinoid receptors and endocannabinoid levels are elevated by stroke, with potential neuroprotective effects. We therefore explored the role of endocannabinoids in modulating blood-brain barrier (BBB) permeability in normal conditions and in an ischaemia/reperfusion model. EXPERIMENTAL APPROACH: Human brain microvascular endothelial cell and astrocyte co-cultures modelled the BBB. Ischaemia was modelled by oxygen-glucose deprivation (OGD) and permeability was measured by transepithelial electrical resistance. Endocannabinoids or endocannabinoid-like compounds were assessed for their ability to modulate baseline permeability or OGD-induced hyperpermeability. Target sites of action were investigated using receptor antagonists and subsequently identified with real-time PCR. KEY RESULTS: Anandamide (10 µM) and oleoylethanolamide (OEA, 10 µM) decreased BBB permeability (i.e. increased resistance). This was mediated by cannabinoid CB2 receptors, transient receptor potential vanilloid 1 (TRPV1) channels, calcitonin gene-regulated peptide (CGRP) receptor (anandamide only) and PPARα (OEA only). Application of OEA, palmitoylethanolamide (both PPARα mediated) or virodhamine (all 10 µM) decreased the OGD-induced increase in permeability during reperfusion. 2-Arachidonoyl glycerol, noladin ether and oleamide did not affect BBB permeability in normal or OGD conditions. N-arachidonoyl-dopamine increased permeability through a cytotoxic mechanism. PPARα and γ, CB1 receptors, TRPV1 channels and CGRP receptors were expressed in both cell types, but mRNA for CB2 receptors was only present in astrocytes. CONCLUSION AND IMPLICATION: The endocannabinoids may play an important modulatory role in normal BBB physiology, and also afford protection to the BBB during ischaemic stroke, through a number of target sites.


Assuntos
Barreira Hematoencefálica/metabolismo , Endocanabinoides/metabolismo , Traumatismo por Reperfusão/metabolismo , Ácidos Araquidônicos/administração & dosagem , Ácidos Araquidônicos/metabolismo , Astrócitos/metabolismo , Células Cultivadas , Técnicas de Cocultura , Impedância Elétrica , Endocanabinoides/administração & dosagem , Células Endoteliais/metabolismo , Humanos , Ácidos Oleicos/administração & dosagem , Ácidos Oleicos/metabolismo , Permeabilidade , Alcamidas Poli-Insaturadas/administração & dosagem , Alcamidas Poli-Insaturadas/metabolismo , RNA Mensageiro/metabolismo , Receptor CB2 de Canabinoide/metabolismo
14.
J Cereb Blood Flow Metab ; 35(3): 348-58, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25492113

RESUMO

Cannabinoids (CBs) show promise as neuroprotectants with some agents already licensed in humans for other conditions. We systematically reviewed CBs in preclinical stroke to guide further experimental protocols. We selected controlled studies assessing acute administration of CBs for experimental stroke, identified through systematic searches. Data were extracted on lesion volume, outcome and quality, and analyzed using random effect models. Results are expressed as standardized mean difference (SMD) with 95% confidence intervals (CIs). In all, 144 experiments (34 publications) assessed CBs on infarct volume in 1,473 animals. Cannabinoids reduced infarct volume in transient (SMD -1.41 (95% CI -1.71), -1.11) P<0.00001) and permanent (-1.67 (-2.08, -1.27), P<0.00001) ischemia and in all subclasses: endocannabinoids (-1.72 (-2.62, -0.82), P=0.0002), CB1/CB2 ligands (-1.75 (-2.19, -1.31), P<0.00001), CB2 ligands (-1.65 (-2.09, -1.22), P<0.00001), cannabidiol (-1.20 (-1.63, -0.77), P<0.00001), Δ(9)-tetrahydrocannabinol (-1.43 (-2.01, -0.86), P<0.00001), and HU-211 (-2.90 (-4.24, -1.56), P<0.0001). Early and late neuroscores significantly improved with CB use (-1.27 (-1.58, -0.95), P<0.00001; -1.63 (-2.64, -0.62), P<0.002 respectively) and there was no effect on survival. Statistical heterogeneity and publication bias was present, median study quality was 4 (range 1 to 6/8). Overall, CBs significantly reduced infarct volume and improve functional outcome in experimental stroke. Further studies in aged, female and larger animals, with other co-morbidities are required.


Assuntos
Encéfalo/efeitos dos fármacos , Canabinoides/farmacologia , Fármacos Neuroprotetores/farmacologia , Acidente Vascular Cerebral/patologia , Animais , Modelos Animais de Doenças
15.
Br J Clin Pharmacol ; 75(2): 313-22, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22670794

RESUMO

Cannabidiol (CBD) has beneficial effects in disorders as wide ranging as diabetes, Huntington's disease, cancer and colitis. Accumulating evidence now also suggests that CBD is beneficial in the cardiovascular system. CBD has direct actions on isolated arteries, causing both acute and time-dependent vasorelaxation. In vitro incubation with CBD enhances the vasorelaxant responses in animal models of impaired endothelium-dependent vasorelaxation. CBD protects against the vascular damage caused by a high glucose environment, inflammation or the induction of type 2 diabetes in animal models and reduces the vascular hyperpermeability associated with such environments. A common theme throughout these studies is the anti-inflammatory and anti-oxidant effect of CBD. In the heart, in vivo CBD treatment protects against ischaemia-reperfusion damage and against cardiomyopathy associated with diabetes. Similarly, in a different model of ischaemia-reperfusion, CBD has been shown to reduce infarct size and increase blood flow in animal models of stroke, sensitive to 5HT(1A) receptor antagonism. Although acute or chronic CBD treatment seems to have little effect on haemodynamics, CBD reduces the cardiovascular response to models of stress, applied either systemically or intracranially, inhibited by a 5HT(1A) receptor antagonist. In blood, CBD influences the survival and death of white blood cells, white blood cell migration and platelet aggregation. Taken together, these preclinical data appear to support a positive role for CBD treatment in the heart, and in peripheral and cerebral vasculature. However, further work is required to strengthen this hypothesis, establish mechanisms of action and whether similar responses to CBD would be observed in humans.


Assuntos
Anti-Inflamatórios/farmacologia , Canabidiol/farmacologia , Doenças Cardiovasculares/tratamento farmacológico , Sistema Cardiovascular/efeitos dos fármacos , Animais , Antioxidantes/farmacologia , Modelos Animais de Doenças , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...