Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Tipo de estudo
Intervalo de ano de publicação
1.
Commun Biol ; 6(1): 1093, 2023 10 27.
Artigo em Inglês | MEDLINE | ID: mdl-37891254

RESUMO

Deficiency in human mature frataxin (hFXN-M) protein is responsible for the devastating neurodegenerative and cardiodegenerative disease of Friedreich's ataxia (FRDA). It results primarily through epigenetic silencing of the FXN gene by GAA triplet repeats on intron 1 of both alleles. GAA repeat lengths are most commonly between 600 and 1200 but can reach 1700. A subset of approximately 3% of FRDA patients have GAA repeats on one allele and a mutation on the other. FRDA patients die most commonly in their 30s from heart disease. Therefore, increasing expression of heart hFXN-M using gene therapy offers a way to prevent early mortality in FRDA. We used rhesus macaque monkeys to test the pharmacology of an adeno-associated virus (AAV)hu68.CB7.hFXN therapy. The advantage of using non-human primates for hFXN-M gene therapy studies is that hFXN-M and monkey FXN-M (mFXN-M) are 98.5% identical, which limits potential immunologic side-effects. However, this presented a formidable bioanalytical challenge in quantification of proteins with almost identical sequences. This could be overcome by the development of a species-specific quantitative mass spectrometry-based method, which has revealed for the first time, robust transgene-specific human protein expression in monkey heart tissue. The dose response is non-linear resulting in a ten-fold increase in monkey heart hFXN-M protein expression with only a three-fold increase in dose of the vector.


Assuntos
Ataxia de Friedreich , Proteínas de Ligação ao Ferro , Animais , Humanos , Macaca mulatta , Proteínas de Ligação ao Ferro/genética , Coração , Ataxia de Friedreich/genética , Ataxia de Friedreich/terapia , Ataxia de Friedreich/metabolismo , Terapia Genética , Frataxina
2.
J Vet Intern Med ; 37(6): 2200-2210, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37847024

RESUMO

BACKGROUND: A treatment of chronic kidney disease (CKD)-associated anemia in cats is needed. SB-001 is an adeno-associated virus-vectored (AAV)-based gene therapeutic agent that is administered intramuscularly, causing the expression of feline erythropoietin. HYPOTHESIS/OBJECTIVE: We hypothesized that SB-001 injection would lead to a sustained increase in PCV in cats with CKD-associated anemia. ANIMALS: Twenty-three cats with International Renal Interest Society (IRIS) Stage 2 to 4 CKD-associated anemia were enrolled at 4 veterinary clinics. METHODS: In a prospective clinical trial, cats were treated with 1 of 3 regimens of SB-001 (Lo 1.2 × 109 genome copies [GCs] on Day 0; Lo ± Hi [supplemental 2nd dose of 3.65 × 109 GC on Day 42]; Hi 3.65 × 109 GC IM on Day 0) and followed for 70 days. RESULTS: A response to SB-001 at any time between Day 28 and Day 70 was seen in 86% (95% confidence interval 65, 97%) of all cats. There was a significant (P < .003) increase in PCV from Day 0 to Day 28 (mean increase 6 ± 6 percentage points [pp]; n = 21), Day 42 (8 ± 9 pp; n = 21), Day 56 (10 ± 11 pp; n = 17), and Day 70 (13 ± 14 pp, n = 14). Twelve cats were hypertensive at baseline, 4 of which developed encephalopathy during the study. An additional 6 cats became hypertensive during the study. CONCLUSIONS AND CLINICAL IMPORTANCE: Results of this study suggest that SB-001 therapy represents a suitable single injection treatment that can address nonregenerative anemia in cats with CKD. It was generally well tolerated; however, hypertension and encephalopathy developed in some cats as previously described in association with erythropoiesis-stimulating agent therapy.


Assuntos
Anemia , Encefalopatias , Doenças do Gato , Eritropoetina , Hipertensão , Insuficiência Renal Crônica , Gatos , Animais , Dependovirus/genética , Estudos Prospectivos , Insuficiência Renal Crônica/complicações , Insuficiência Renal Crônica/terapia , Insuficiência Renal Crônica/veterinária , Anemia/terapia , Anemia/veterinária , Eritropoetina/genética , Eritropoetina/uso terapêutico , Hipertensão/veterinária , Encefalopatias/veterinária , Terapia Genética/veterinária , Doenças do Gato/terapia
3.
Hum Gene Ther ; 34(19-20): 1022-1032, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-36719773

RESUMO

Advances in adeno-associated virus (AAV)-based gene therapy are transforming our ability to treat rare genetic disorders and address other unmet medical needs. However, the natural prevalence of anti-AAV neutralizing antibodies (NAbs) in humans currently limits the population who can benefit from AAV-based gene therapies. Neonatal Fc receptor (FcRn) plays an essential role in the long half-life of IgG, a key NAb. Researchers have developed several FcRn-inhibiting monoclonal antibodies to treat autoimmune diseases, as inhibiting the interaction between FcRn and IgG Fc can reduce circulating IgG levels to 20-30% of the baseline. We evaluated the utility of one such monoclonal antibody, M281, to reduce pre-existing NAb levels and to permit gene delivery to the liver and heart via systemic AAV gene therapy in mice and nonhuman primates. M281 successfully reduced NAb titers along with total IgG levels; it also enhanced gene delivery to the liver and other organs after intravenous administration of AAV in NAb-positive animals. These results indicate that mitigating pre-existing humoral immunity via disruption of the FcRn-IgG interaction may make AAV-based gene therapies effective in NAb-positive patients.


Assuntos
Terapia Genética , Imunidade Humoral , Imunoglobulina G , Animais , Camundongos , Anticorpos Neutralizantes/genética , Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais , Dependovirus/genética , Dependovirus/imunologia , Terapia Genética/métodos , Vetores Genéticos/genética , Imunidade Humoral/genética , Imunidade Humoral/imunologia , Imunoglobulina G/genética , Imunoglobulina G/imunologia
4.
Mol Ther Methods Clin Dev ; 27: 272-280, 2022 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-36320416

RESUMO

Gene therapy using neurotropic adeno-associated virus vectors represents an emerging solution for genetic disorders affecting the central nervous system. The first approved central nervous system-targeting adeno-associated virus gene therapy, Zolgensma®, for treating spinal muscular atrophy is administered intravenously at high doses that cause liver-associated adverse events in 20%-30% of patients. Intrathecal routes of vector administration, such as the intra-cisterna magna route, provide efficient gene transduction to central nervous system cells while reducing off-target liver transduction. However, significant levels of liver transduction often occur upon intra-cisterna magna vector delivery in preclinical studies. Using vectors expressing monoclonal antibody transgenes, we examined whether passive transfer of adeno-associated virus-neutralizing antibodies as intravenous immunoglobulin before intrathecal adeno-associated virus delivery improved the safety of viral gene therapy targeting the central nervous system in mice and nonhuman primates. We used intracerebroventricular and intra-cisterna magna routes for vector administration to mice and nonhuman primates, respectively, and evaluated transgene expression and vector genome distribution. Our data indicate that pretreatment with intravenous immunoglobulin significantly reduced gene transduction to the liver and other peripheral organs but not to the central nervous system in both species. With further refinement, this method may improve the safety of adeno-associated virus-based, central nervous system-targeting gene therapies in clinical settings.

6.
Sci Transl Med ; 5(194): 194ra92, 2013 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-23863832

RESUMO

Adeno-associated virus (AAV) vectors delivered through the systemic circulation successfully transduce various target tissues in animal models. However, similar attempts in humans have been hampered by the high prevalence of neutralizing antibodies to AAV, which completely block vector transduction. We show in both mouse and nonhuman primate models that addition of empty capsid to the final vector formulation can, in a dose-dependent manner, adsorb these antibodies, even at high titers, thus overcoming their inhibitory effect. To further enhance the safety of the approach, we mutated the receptor binding site of AAV2 to generate an empty capsid mutant that can adsorb antibodies but cannot enter a target cell. Our work suggests that optimizing the ratio of full/empty capsids in the final formulation of vector, based on a patient's anti-AAV titers, will maximize the efficacy of gene transfer after systemic vector delivery.


Assuntos
Capsídeo/imunologia , Dependovirus/imunologia , Técnicas de Transferência de Genes , Imunidade Humoral/imunologia , Animais , Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/imunologia , Humanos , Macaca mulatta/imunologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Mutação/genética , Testes de Neutralização
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...