Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cell Rep ; 43(7): 114361, 2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38900634

RESUMO

Neurons receive correlated levels of excitation and inhibition, a feature that is important for proper brain function. However, how this relationship between excitatory and inhibitory inputs is established during the dynamic period of circuit wiring remains unexplored. Using multiple techniques, including in utero electroporation, electron microscopy, and electrophysiology, we reveal a tight correlation in the distribution of excitatory and inhibitory synapses along the dendrites of developing CA1 hippocampal neurons. This correlation was present within short dendritic stretches (<20 µm) and, surprisingly, was most pronounced during early development, sharply declining with maturity. The tight matching between excitation and inhibition was unexpected, as inhibitory synapses lacked an active zone when formed and exhibited compromised evoked release. We propose that inhibitory synapses form as a stabilizing scaffold to counterbalance growing excitation levels. This relationship diminishes over time, suggesting a critical role for a subcellular balance in early neuronal function and circuit formation.

2.
Nat Commun ; 15(1): 3648, 2024 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-38684645

RESUMO

Neuronal network formation is facilitated by recognition between synaptic cell adhesion molecules at the cell surface. Alternative splicing of cell adhesion molecules provides additional specificity in forming neuronal connections. For the teneurin family of cell adhesion molecules, alternative splicing of the EGF-repeats and NHL domain controls synaptic protein-protein interactions. Here we present cryo-EM structures of the compact dimeric ectodomain of two teneurin-3 isoforms that harbour the splice insert in the EGF-repeats. This dimer is stabilised by an EGF8-ABD contact between subunits. Cryo-EM reconstructions of all four splice variants, together with SAXS and negative stain EM, reveal compacted dimers for each, with variant-specific dimeric arrangements. This results in specific trans-cellular interactions, as tested in cell clustering and stripe assays. The compact conformations provide a structural basis for teneurin homo- and heterophilic interactions. Altogether, our findings demonstrate how alternative splicing results in rearrangements of the dimeric subunits, influencing neuronal recognition and likely circuit wiring.


Assuntos
Processamento Alternativo , Microscopia Crioeletrônica , Neurônios , Neurônios/metabolismo , Animais , Humanos , Multimerização Proteica , Proteínas do Tecido Nervoso/metabolismo , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/química , Isoformas de Proteínas/metabolismo , Isoformas de Proteínas/genética , Isoformas de Proteínas/química , Modelos Moleculares
3.
MicroPubl Biol ; 20242024.
Artigo em Inglês | MEDLINE | ID: mdl-38344062

RESUMO

Sensory gating, measured using prepulse inhibition (PPI), is an endophenotype of neuropsychiatric disorders that can be assessed in larval zebrafish models. However, current PPI assays require high-speed cameras to capture rapid c-bend startle behaviours of the larvae. In this study, we designed and employed a PPI paradigm that uses locomotion as a read-out of zebrafish larval startle responses. PPI percentage was measured at a maximum of 87% and strongly reduced upon administration of the NMDA receptor antagonist, MK-801. This work provides the foundation for simpler and more accessible PPI assays using larval zebrafish to model key endophenotypes of neurodevelopmental disorders.

4.
Front Neurosci ; 16: 915149, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36408396

RESUMO

Synaptic specificity during neurodevelopment is driven by combinatorial interactions between select cell adhesion molecules expressed at the synaptic membrane. These protein-protein interactions are important for instructing the correct connectivity and functionality of the nervous system. Teneurins are one family of synaptic adhesion molecules, highly conserved and widely expressed across interconnected areas during development. These type-II transmembrane glycoproteins are involved in regulating key neurodevelopmental processes during the establishment of neural connectivity. While four teneurin paralogues are found in vertebrates, their subcellular distribution within neurons and interaction between these different paralogues remains largely unexplored. Here we show, through fluorescently tagging teneurin paralogues, that true to their function as synaptic adhesion molecules, all four paralogues are found in a punctate manner and partially localised to synapses when overexpressed in neurons in vitro. Interestingly, each paralogue is differentially distributed across different pre- and post-synaptic sites. In organotypic cultures, Tenm3 is similarly localised to dendritic spines in CA1 neurons, particularly to spine attachment points. Furthermore, we show that the intracellular domain of teneurin plays an important role for synaptic localisation. Finally, while previous studies have shown that the extracellular domain of teneurins allows for active dimer formation and transsynaptic interactions, we find that all paralogues are able to form the full complement of homodimers and cis-heterodimers. This suggests that the combinatorial power to generate distinct molecular teneurin complexes underlying synaptic specificity is even higher than previously thought. The emerging link between teneurin with cancers and neurological disorders only serves to emphasise the importance of further elucidating the molecular mechanisms of teneurin function and their relation to human health and disease.

6.
J Neurosci ; 40(42): 8103-8118, 2020 10 14.
Artigo em Inglês | MEDLINE | ID: mdl-32917789

RESUMO

Interstitial axon branching is an essential step during the establishment of neuronal connectivity. However, the exact mechanisms on how the number and position of branches are determined are still not fully understood. Here, we investigated the role of Arl8B, an adaptor molecule between lysosomes and kinesins. In chick retinal ganglion cells (RGCs), downregulation of Arl8B reduces axon branch density and shifts their location more proximally, while Arl8B overexpression leads to increased density and more distal positions of branches. These alterations correlate with changes in the location and density of lysosomes and autophagosomes along the axon shaft. Diminishing autophagy directly by knock-down of atg7, a key autophagy gene, reduces branch density, while induction of autophagy by rapamycin increases axon branching, indicating that autophagy plays a prominent role in axon branch formation. In vivo, local inactivation of autophagy in the retina using a mouse conditional knock-out approach disturbs retino-collicular map formation which is dependent on the formation of interstitial axon branches. These data suggest that Arl8B plays a principal role in the positioning of axon branches by spatially controlling autophagy, thus directly controlling formation of neural connectivity in the brain.SIGNIFICANCE STATEMENT The formation of interstitial axonal branches plays a prominent role in numerous places of the developing brain during neural circuit establishment. We show here that the GTPase Arl8B controls density and location of interstitial axon branches, and at the same time controls also density and location of the autophagy machinery. Upregulation or downregulation of autophagy in vitro promotes or inhibits axon branching. Local disruption of autophagy in vivo disturbs retino-collicular mapping. Our data suggest that Arl8B controls axon branching by controlling locally autophagy. This work is one of the first reports showing a role of autophagy during early neural circuit development and suggests that autophagy in general plays a much more prominent role during brain development than previously anticipated.


Assuntos
Fatores de Ribosilação do ADP/fisiologia , Autofagossomos/fisiologia , Axônios/fisiologia , Lisossomos/fisiologia , Fatores de Ribosilação do ADP/metabolismo , Animais , Autofagossomos/enzimologia , Autofagossomos/ultraestrutura , Autofagia/genética , Axônios/enzimologia , Axônios/ultraestrutura , Embrião de Galinha , Regulação para Baixo , Técnicas de Silenciamento de Genes , Lisossomos/enzimologia , Lisossomos/ultraestrutura , Camundongos Knockout , Cultura Primária de Células , Células Ganglionares da Retina/metabolismo , Células Ganglionares da Retina/ultraestrutura
7.
Front Neurosci ; 13: 158, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30914911

RESUMO

The teneurins, also known as Ten-m/Odz, are highly conserved type II transmembrane glycoproteins widely expressed throughout the nervous system. Functioning as dimers, these large cell-surface adhesion proteins play a key role in regulating neurodevelopmental processes such as axon targeting, synaptogenesis and neuronal wiring. Synaptic specificity is driven by molecular interactions, which can occur either in a trans-homophilic manner between teneurins or through a trans-heterophilic interaction across the synaptic cleft between teneurins and other cell-adhesion molecules, such as latrophilins. The significance of teneurins interactions during development is reflected in the widespread expression pattern of the four existing paralogs across interconnected regions of the nervous system, which we demonstrate here via in situ hybridization and the generation of transgenic BAC reporter lines in zebrafish. Focusing on the visual system, we will also highlight the recent developments that have been made in furthering our understanding of teneurin interactions and their functionality, including the instructive role of teneurin-3 in specifying the functional wiring of distinct amacrine and retinal ganglion cells in the vertebrate visual system underlying a particular functionality. Based on the distinct expression pattern of all teneurins in different retinal cells, it is conceivable that the combination of different teneurins is crucial for the generation of discrete visual circuits. Finally, mutations in all four human teneurin genes have been linked to several types of neurodevelopmental disorders. The opportunity therefore arises that findings about the roles of zebrafish teneurins or their orthologs in other species shed light on the molecular mechanisms in the etiology of such human disorders.

8.
Dev Dyn ; 248(3): 201-210, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30653268

RESUMO

BACKGROUND: The timing, location, and level of gene expression are crucial for normal organ development, because morphogenesis requires strict genetic control. MicroRNAs (miRNAs) are noncoding small single-stranded RNAs that play a critical role in regulating gene expression level. Although miRNAs are known to be involved in many biological events, the role of miRNAs in organogenesis is not fully understood. Mammalian eyelids fuse and separate during development and growth. In mice, failure of this process results in the eye-open at birth (EOB) phenotype. RESULTS: It has been shown that conditional deletion of mesenchymal Dicer (an essential protein for miRNA processing; Dicer fl/fl ;Wnt1Cre) leads to the EOB phenotype with full penetrance. Here, we identified that the up-regulation of Wnt signaling resulted in the EOB phenotype in Dicer mutants. Down-regulation of Fgf signaling observed in Dicer mutants was caused by an inverse relationship between Fgf and Wnt signaling. Shh and Bmp signaling were down-regulated as the secondary effects in Dicer fl/fl ;Wnt1Cre mice. Wnt, Shh, and Fgf signaling were also found to mediate the epithelial-mesenchymal interactions in eyelid development. CONCLUSIONS: miRNAs control eyelid development through Wnt. Developmental Dynamics 248:201-210, 2019. © 2019 Wiley Periodicals, Inc.


Assuntos
Pálpebras/crescimento & desenvolvimento , MicroRNAs/fisiologia , Via de Sinalização Wnt , Animais , RNA Helicases DEAD-box/deficiência , Regulação da Expressão Gênica no Desenvolvimento , Camundongos , Organogênese , Fenótipo , Ribonuclease III/deficiência
9.
Annu Rev Vis Sci ; 4: 25-44, 2018 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-29889656

RESUMO

The small RNA regulatory molecules called microRNAs (miRNAs) play key roles in the development of most organisms. The expression of many different miRNAs has been described in the developing and mature vertebrate retina. The ability of miRNAs to regulate a diversity of messenger RNA targets allows them to have effects on many different developmental processes, but the functions of only a few miRNAs have been documented to date. Developmental transitions between cell states appear to be particularly sensitive to miRNA loss of function, as evidenced by specific miRNA knockdowns or from global perturbations in miRNA levels (e.g., Dicer deletion). However, we are still in only the very early stages of understanding the range of cellular functions miRNAs control during development.


Assuntos
MicroRNAs/fisiologia , Retina/embriologia , Retina/fisiologia , Animais , Axônios/fisiologia , Diferenciação Celular/fisiologia
10.
Front Neural Circuits ; 12: 11, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29467629

RESUMO

Visual information is already processed in the retina before it is transmitted to higher visual centers in the brain. This includes the extraction of salient features from visual scenes, such as motion directionality or contrast, through neurons belonging to distinct neural circuits. Some retinal neurons are tuned to the orientation of elongated visual stimuli. Such 'orientation-selective' neurons are present in the retinae of most, if not all, vertebrate species analyzed to date, with species-specific differences in frequency and degree of tuning. In some cases, orientation-selective neurons have very stereotyped functional and morphological properties suggesting that they represent distinct cell types. In this review, we describe the retinal cell types underlying orientation selectivity found in various vertebrate species, and highlight their commonalities and differences. In addition, we discuss recent studies that revealed the cellular, synaptic and circuit mechanisms at the basis of retinal orientation selectivity. Finally, we outline the significance of these findings in shaping our current understanding of how this fundamental neural computation is implemented in the visual systems of vertebrates.


Assuntos
Orientação/fisiologia , Retina/fisiologia , Animais , Humanos , Retina/citologia , Vias Visuais/citologia , Vias Visuais/fisiologia
11.
Curr Biol ; 26(14): 1802-15, 2016 07 25.
Artigo em Inglês | MEDLINE | ID: mdl-27374343

RESUMO

The orientation of visual stimuli is a salient feature of visual scenes. In vertebrates, the first neural processing steps generating orientation selectivity take place in the retina. Here, we dissect an orientation-selective circuit in the larval zebrafish retina and describe its underlying synaptic, cellular, and molecular mechanisms. We genetically identify a class of amacrine cells (ACs) with elongated dendritic arbors that show orientation tuning. Both selective optogenetic ablation of ACs marked by the cell-adhesion molecule Teneurin-3 (Tenm3) and pharmacological interference with their function demonstrate that these cells are critical components for orientation selectivity in retinal ganglion cells (RGCs) by being a source of tuned GABAergic inhibition. Moreover, our morphological analyses reveal that Tenm3(+) ACs and orientation-selective RGCs co-stratify their dendrites in the inner plexiform layer, and that Tenm3(+) ACs require Tenm3 to acquire their correct dendritic stratification. Finally, we show that orientation tuning is present also among bipolar cell presynaptic terminals. Our results define a neural circuit underlying orientation selectivity in the vertebrate retina and characterize cellular and molecular requirements for its assembly.


Assuntos
Orientação , Células Ganglionares da Retina/fisiologia , Peixe-Zebra/fisiologia , Animais , Proteínas do Tecido Nervoso/metabolismo , Peixe-Zebra/genética , Proteínas de Peixe-Zebra/metabolismo
12.
Sci Rep ; 6: 29490, 2016 07 06.
Artigo em Inglês | MEDLINE | ID: mdl-27381182

RESUMO

The larval zebrafish (Danio rerio) is an excellent vertebrate model for in vivo imaging of biological phenomena at subcellular, cellular and systems levels. However, the optical accessibility of highly pigmented tissues, like the eyes, is limited even in this animal model. Typical strategies to improve the transparency of zebrafish larvae require the use of either highly toxic chemical compounds (e.g. 1-phenyl-2-thiourea, PTU) or pigmentation mutant strains (e.g. casper mutant). To date none of these strategies produce normally behaving larvae that are transparent in both the body and the eyes. Here we present crystal, an optically clear zebrafish mutant obtained by combining different viable mutations affecting skin pigmentation. Compared to the previously described combinatorial mutant casper, the crystal mutant lacks pigmentation also in the retinal pigment epithelium, therefore enabling optical access to the eyes. Unlike PTU-treated animals, crystal larvae are able to perform visually guided behaviours, such as the optomotor response, as efficiently as wild type larvae. To validate the in vivo application of crystal larvae, we performed whole-brain light-sheet imaging and two-photon calcium imaging of neural activity in the retina. In conclusion, this novel combinatorial pigmentation mutant represents an ideal vertebrate tool for completely unobstructed structural and functional in vivo investigations of biological processes, particularly when imaging tissues inside or between the eyes.


Assuntos
Diagnóstico por Imagem/métodos , Retina/embriologia , Peixe-Zebra/embriologia , Animais , Encéfalo/embriologia , Mapeamento Encefálico/métodos , Cálcio/química , Cruzamentos Genéticos , Olho/embriologia , Larva , Microscopia Confocal , Modelos Animais , Modelos Neurológicos , Mutação , Neurônios/metabolismo , Óptica e Fotônica , Fenótipo , Feniltioureia/química , Fótons , Pigmentação , Pigmentação da Pele
13.
Dev Neurobiol ; 75(6): 569-83, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25649254

RESUMO

The formation of visual circuitry is a multistep process that involves cell-cell interactions based on a range of molecular mechanisms. The correct implementation of individual events, including axon outgrowth and guidance, the formation of the topographic map, or the synaptic targeting of specific cellular subtypes, are prerequisites for a fully functional visual system that is able to appropriately process the information captured by the eyes. Cell adhesion molecules (CAMs) with their adhesive properties and their high functional diversity have been identified as key actors in several of these fundamental processes. Because of their growth-promoting properties, CAMs play an important role in neuritogenesis. Furthermore, they are necessary to control additional neurite development, regulating dendritic spacing and axon pathfinding. Finally, trans-synaptic interactions of CAMs ensure cell type-specific connectivity as a basis for the establishment of circuits processing distinct visual features. Recent discoveries implicating CAMs in novel mechanisms have led to a better general understanding of neural circuit formation, but also revealed an increasing complexity of their function. This review aims at describing the different levels of action for CAMs to shape neural connectivity, with a special focus on the visual system.


Assuntos
Moléculas de Adesão Celular/metabolismo , Neuritos/fisiologia , Neurônios/citologia , Retina/citologia , Sinapses/fisiologia , Vias Visuais/citologia , Animais , Adesão Celular/fisiologia , Comunicação Celular , Humanos , Retina/fisiologia , Vias Visuais/metabolismo
14.
Curr Biol ; 24(14): 1620-1627, 2014 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-24998526

RESUMO

Planar cell polarity (PCP) describes the polarization of cell structures and behaviors within the plane of a tissue. PCP is essential for the generation of tissue architecture during embryogenesis and for postnatal growth and tissue repair, yet how it is oriented to coordinate cell polarity remains poorly understood [1]. In Drosophila, PCP is mediated via the Frizzled-Flamingo (Fz-PCP) and Dachsous-Fat (Fat-PCP) pathways [1-3]. Fz-PCP is conserved in vertebrates, but an understanding in vertebrates of whether and how Fat-PCP polarizes cells, and its relationship to Fz-PCP signaling, is lacking. Mutations in human FAT4 and DCHS1, key components of Fat-PCP signaling, cause Van Maldergem syndrome, characterized by severe neuronal abnormalities indicative of altered neuronal migration [4]. Here, we investigate the role and mechanisms of Fat-PCP during neuronal migration using the murine facial branchiomotor (FBM) neurons as a model. We find that Fat4 and Dchs1 are expressed in complementary gradients and are required for the collective tangential migration of FBM neurons and for their PCP. Fat4 and Dchs1 are required intrinsically within the FBM neurons and extrinsically within the neuroepithelium. Remarkably, Fat-PCP and Fz-PCP regulate FBM neuron migration along orthogonal axes. Disruption of the Dchs1 gradients by mosaic inactivation of Dchs1 alters FBM neuron polarity and migration. This study implies that PCP in vertebrates can be regulated via gradients of Fat4 and Dchs1 expression, which establish intracellular polarity across FBM cells during their migration. Our results also identify Fat-PCP as a novel neuronal guidance system and reveal that Fat-PCP and Fz-PCP can act along orthogonal axes.


Assuntos
Caderinas/metabolismo , Polaridade Celular/fisiologia , Regulação da Expressão Gênica no Desenvolvimento , Neurônios Motores/fisiologia , Animais , Caderinas/biossíntese , Caderinas/genética , Movimento Celular , Drosophila , Proteínas de Drosophila/biossíntese , Complexo de Golgi/fisiologia , Glicoproteínas de Membrana/biossíntese , Camundongos , Camundongos Knockout , Transdução de Sinais
15.
Neuro Oncol ; 16(4): 476-92, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24470543

RESUMO

The human brain is capable of generating new functional neurons throughout life, a phenomenon known as adult neurogenesis. The generation of new neurons is sustained throughout adulthood due to the proliferation and differentiation of adult neural stem cells. This process in humans is uniquely located in the subgranular zone of the dentate gyrus in the hippocampus. Adult hippocampal neurogenesis (AHN) is thought to play a major role in hippocampus-dependent functions, such as spatial awareness, long-term memory, emotionality, and mood. The overall aim of current treatments for cancer (such as radiotherapy and chemotherapy) is to prevent aberrant cell division of cell populations associated with malignancy. However, the treatments in question are absolutist in nature and hence inhibit all cell division. An unintended consequence of this cessation of cell division is the impairment of adult neural stem cell proliferation and AHN. Patients undergoing treatment for cancerous malignancies often display specific forms of memory deficits, as well as depressive symptoms. This review aims to discuss the effects of cancer treatments on AHN and propose a link between the inhibition of the neurogenetic process in the hippocampus and the advent of the cognitive and mood-based deficits observed in patients and animal models undergoing cancer therapies. Possible evidence for coadjuvant interventions aiming to protect neural cells, and subsequently the mood and cognitive functions they regulate, from the ablative effects of cancer treatment are discussed as potential clinical tools to improve mental health among cancer patients.


Assuntos
Transtornos Cognitivos/etiologia , Terapia Combinada/efeitos adversos , Depressão/etiologia , Hipocampo/patologia , Neoplasias/terapia , Células-Tronco Neurais/patologia , Adulto , Animais , Transtornos Cognitivos/diagnóstico , Depressão/diagnóstico , Hipocampo/efeitos dos fármacos , Hipocampo/efeitos da radiação , Humanos , Neoplasias/complicações , Neoplasias/patologia , Células-Tronco Neurais/efeitos dos fármacos , Células-Tronco Neurais/efeitos da radiação , Neurogênese/efeitos dos fármacos , Neurogênese/efeitos da radiação
16.
J Neurosci ; 34(3): 969-79, 2014 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-24431455

RESUMO

A crucial step in the development of the vertebrate visual system is the branching of retinal ganglion cell (RGC) axons within their target, the superior colliculus/tectum. A major player in this process is the neurotrophin brain-derived neurotrophic factor (BDNF). However, the molecular basis for the signaling pathways mediating BDNF action is less well understood. As BDNF exerts some of its functions by controlling the expression of microRNAs (miRNAs), we investigated whether miRNAs are also involved in BDNF-mediated retinal axon branching. Here, we demonstrate that the expression pattern of miRNA-132 in the retina is consistent with its involvement in this process, and that BDNF induces the upregulation of miRNA-132 in retinal cultures. Furthermore, in vitro gain-of-function and loss-of-function approaches in retinal cultures reveal that miRNA-132 mediates axon branching downstream of BDNF. A known target of miRNA-132 is the Rho family GTPase-activating protein, p250GAP. We find that p250GAP is expressed in RGC axons and mediates the effects of miRNA-132 in BDNF-induced branching. BDNF treatment or overexpression of miRNA-132 leads to a reduction in p250GAP protein levels in retinal cultures, whereas the overexpression of p250GAP abolishes BDNF-induced branching. Finally, we used a loss-of-function approach to show that miRNA-132 affects the maturation of RGC termination zones in the mouse superior colliculus in vivo, while their topographic targeting remains intact. Together, our data indicate that BDNF promotes RGC axon branching during retinocollicular/tectal map formation via upregulation of miRNA-132, which in turn downregulates p250GAP.


Assuntos
Axônios/metabolismo , Fator Neurotrófico Derivado do Encéfalo/farmacologia , Proteínas Ativadoras de GTPase/fisiologia , MicroRNAs/fisiologia , Células Ganglionares da Retina/metabolismo , Animais , Axônios/efeitos dos fármacos , Células Cultivadas , Embrião de Galinha , Feminino , Proteínas Ativadoras de GTPase/deficiência , Camundongos , Camundongos Endogâmicos C57BL , Gravidez , Células Ganglionares da Retina/efeitos dos fármacos
17.
Cell Rep ; 5(3): 582-92, 2013 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-24183672

RESUMO

A striking feature of the CNS is the precise wiring of its neuronal connections. During vertebrate visual system development, different subtypes of retinal ganglion cells (RGCs) form specific connections with their corresponding synaptic partners. However, the underlying molecular mechanisms remain to be fully elucidated. Here, we report that the cell-adhesive transmembrane protein Teneurin-3 (Tenm3) is required by zebrafish RGCs for acquisition of their correct morphological and functional connectivity in vivo. Teneurin-3 is expressed by RGCs and their presynaptic amacrine and postsynaptic tectal cell targets. Knockdown of Teneurin-3 leads to RGC dendrite stratification defects within the inner plexiform layer, as well as mistargeting of dendritic processes into outer portions of the retina. Moreover, a subset of RGC axons exhibits tectal laminar arborization errors. Finally, functional analysis of RGCs targeting the tectum reveals a selective deficit in the development of orientation selectivity after Teneurin-3 knockdown. These results suggest that Teneurin-3 plays an instructive role in the functional wiring of the vertebrate visual system.


Assuntos
Proteínas do Tecido Nervoso/metabolismo , Células Ganglionares da Retina/fisiologia , Vias Visuais/fisiologia , Proteínas de Peixe-Zebra/metabolismo , Animais , Animais Geneticamente Modificados , Técnicas de Silenciamento de Genes , Microscopia Confocal , Proteínas do Tecido Nervoso/biossíntese , Proteínas do Tecido Nervoso/genética , Neurônios/metabolismo , Neurônios/fisiologia , Células Ganglionares da Retina/metabolismo , Peixe-Zebra , Proteínas de Peixe-Zebra/biossíntese , Proteínas de Peixe-Zebra/genética
18.
Nat Commun ; 4: 1938, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23733098

RESUMO

The formation of the retinotopic map depends on the action of axon guidance molecules, activity-dependent mechanisms and axonal competition. However, little is known about the plasticity potential of the system and the effects on the remodelling of retinocollicular connections upon retinal insults. Here we create a mouse model in which retinal ganglion cells that project to anterior and posterior superior colliculus undergo cell death during topographic map formation. We show that the remaining retinal ganglion cells expand the targeted area in the superior colliculus and at the same time increase their spatial coverage in the retina in a correlated fashion. The resulting contralateral topographic map is overall maintained but less precise, while ipsilateral retinal ganglion cell axons are abnormally distributed in anterior and posterior superficial superior colliculus. These results suggest the presence of plastic mechanisms in the developing mammalian visual system to adjust retinal space and its target coverage and ensure a uniform map.


Assuntos
Retina/patologia , Degeneração Retiniana/patologia , Animais , Animais Recém-Nascidos , Axônios/patologia , Morte Celular , RNA Helicases DEAD-box/metabolismo , Deleção de Genes , Camundongos , Modelos Biológicos , Mutação/genética , Retina/fisiopatologia , Células Ganglionares da Retina/patologia , Ribonuclease III/metabolismo , Colículos Superiores/patologia , Campos Visuais
19.
Dev Dyn ; 241(9): 1465-72, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22753148

RESUMO

BACKGROUND: Tooth development is known to be mediated by the cross-talk between signaling pathways, including Shh, Fgf, Bmp, and Wnt. MicroRNAs (miRNAs) are 19- to 25-nt noncoding small single-stranded RNAs that negatively regulate gene expression by binding target mRNAs, which is believed to be important for the fine-tuning signaling pathways in development. To investigate the role of miRNAs in tooth development, we examined mice with either mesenchymal (Wnt1Cre/Dicer(fl/fl)) or epithelial (ShhCre/Dicer(fl/fl)) conditional deletion of Dicer, which is essential for miRNA processing. RESULTS: By using a CD1 genetic background for Wnt1Cre/Dicer(fl/fl), we were able to examine tooth development, because the mutants retained mandible and maxilla primordia. Wnt1Cre/Dicer(fl/fl) mice showed an arrest or absence of teeth development, which varied in frequency between incisors and molars. Extra incisor tooth formation was found in ShhCre/Dicer(fl/fl) mice, whereas molars showed no significant anomalies. Microarray and in situ hybridization analysis identified several miRNAs that showed differential expression between incisors and molars. CONCLUSION: In tooth development, miRNAs thus play different roles in epithelium and mesenchyme, and in incisors and molars.


Assuntos
Epitélio/embriologia , Mesoderma/embriologia , MicroRNAs/fisiologia , Odontogênese/genética , Dente/embriologia , Animais , RNA Helicases DEAD-box/genética , RNA Helicases DEAD-box/metabolismo , Embrião de Mamíferos , Epitélio/metabolismo , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Proteínas Hedgehog/genética , Proteínas Hedgehog/metabolismo , Integrases/genética , Integrases/metabolismo , Mesoderma/metabolismo , Camundongos , Camundongos Transgênicos , MicroRNAs/genética , MicroRNAs/metabolismo , Análise em Microsséries , Ribonuclease III/genética , Ribonuclease III/metabolismo , Dente/citologia , Dente/metabolismo , Transcriptoma , Proteína Wnt1/genética , Proteína Wnt1/metabolismo
20.
J Gene Med ; 14(5): 299-315, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-22499506

RESUMO

BACKGROUND: Knocking down neuronal LINGO-1 using short hairpin RNAs (shRNAs) might enhance axon regeneration in the central nervous system (CNS). Integration-deficient lentiviral vectors have great potential as a therapeutic delivery system for CNS injuries. However, recent studies have revealed that shRNAs can induce an interferon response resulting in off-target effects and cytotoxicity. METHODS: CNS neurones were transduced with integration-deficient lentiviral vectors in vitro. The transcriptional effect of shRNA expression was analysed using quantitative real time-polymerase chain reaction and northern blots were used to assess shRNA production. RESULTS: Integration-deficient lentiviral vectors efficiently transduced CNS neurones and knocked down LINGO-1 mRNA in vitro. However, an increase in cell death was observed when lentiviral vectors encoding an shRNA were applied or when high vector concentrations were used. We demonstrate that high doses of vector or the use of vectors encoding shRNAs can induce an up-regulation of interferon-stimulated genes (2',5'-oligoadenylate synthase 1 and protein kinase R although not myxovirus resistance 1) and a down-regulation of off-target genes (including p75(NTR) and Nogo receptor 1). Furthermore, the northern blot demonstrated that these negative consequences occur even when lentiviral vectors express low levels of shRNAs. Taken together, these results may explain why neurite outgrowth was not enhanced on an inhibitory substrate following transduction with lentiviral vectors encoding an shRNA targeting LINGO-1. CONCLUSIONS: These findings highlight the importance of including appropriate controls to verify silencing specificity and the requirement to check for an interferon response when conducting RNA interference experiments. However, the potential benefits that RNA interference and viral vectors offer to gene-based therapies to CNS injuries cannot be overlooked and demand further investigation.


Assuntos
Sistema Nervoso Central , Proteínas de Membrana/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Neuritos/metabolismo , RNA Interferente Pequeno/genética , Regeneração/genética , Animais , Sistema Nervoso Central/crescimento & desenvolvimento , Sistema Nervoso Central/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Técnicas de Transferência de Genes/efeitos adversos , Vetores Genéticos , Células HEK293 , Células HeLa , Humanos , Interferons/metabolismo , Lentivirus , Proteínas de Membrana/genética , Proteínas do Tecido Nervoso/genética , Interferência de RNA , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , RNA Interferente Pequeno/efeitos adversos , Ratos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...