Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ScientificWorldJournal ; 2013: 370151, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23533347

RESUMO

The potential clinical utility of engineered muscle is currently restricted by limited in vitro capacity of expanded muscle precursor cells to fuse and form mature myofibers. The purpose of this study was to use isotropic skeletal muscle sheets to explore the impact of (1) fibroblast coculture and (2) fibroblast-conditioned media (fCM) on in vitro myogenesis. Muscle sheets were prepared by seeding varying ratios of skeletal myoblasts and fibroblasts on a biomimetic substrate and culturing the resulting tissue in either control media or fCM. Muscle sheets were prepared from two cell subpopulations, (1) C2C12 and NOR-10 and (2) primary neonatal rat skeletal muscle cells (nSKM). In C2C12/Nor-10 muscle sheets fCM conferred a myogenic advantage early in culture; at D1 a statistically significant 3.12 ± 0.8-fold increase in myofiber density was observed with fCM. A high purity satellite cell population was collected from an initially mixed population of nSKMs via cell sorting for positive α 7-integrin expression. On D6, tissue sheets with low fibroblast concentrations (0 & 10%) cultured in fCM had increased average myofiber density (4.8 ± 0.2 myofibers/field) compared to tissue sheets with high fibroblast concentrations (50%) cultured in control media (1.0 ± 0.1 myofibers/field). Additionally, fCM promoted longer, thicker myofibers with a mature phenotype.


Assuntos
Músculo Esquelético/crescimento & desenvolvimento , Mioblastos Esqueléticos/metabolismo , Técnicas de Cultura de Tecidos/métodos , Engenharia Tecidual , Animais , Animais Recém-Nascidos , Antígenos CD/metabolismo , Técnicas de Cocultura , Meios de Cultivo Condicionados/metabolismo , Fibroblastos/metabolismo , Cadeias alfa de Integrinas/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Desenvolvimento Muscular , Músculo Esquelético/metabolismo , Ratos
2.
Biomaterials ; 32(14): 3575-83, 2011 May.
Artigo em Inglês | MEDLINE | ID: mdl-21324402

RESUMO

One of the obstacles to the potential clinical utility of bioengineered skeletal muscle is its limited force generation capacity. Since engineered muscle, unlike most native muscle tissue, is composed of relatively short myofibers, we hypothesized that, its force production and transmission would be profoundly influenced by cell-matrix interactions. To test this hypothesis, we systematically varied the matrix protein type (collagen I/fibrin/Matrigel) and concentration in engineered, hydrogel-based neonatal rat skeletal muscle bundles and assessed the resulting tissue structure, generation of contractile force, and intracellular Ca(2+) handling. After two weeks of culture, the muscle bundles consisted of highly aligned and cross-striated myofibers and exhibited standard force-length and force-frequency relationships achieving tetanus at 40 Hz. The use of 2 mg/ml fibrin (control) yielded isometric tetanus amplitude of 1.4 ± 0.3 mN as compared to 0.9 ± 0.4 mN measured in collagen I-based bundles. Higher fibrin and Matrigel concentrations synergistically yielded further increase in active force generation to 2.8 ± 0.5 mN without significantly affecting passive mechanical properties, tetanus-to-twitch ratio, and twitch kinetics. Optimized matrix composition yielded significant cellular hypertrophy (protein/DNA ratio = 11.4 ± 4.1 vs. 6.5 ± 1.9 µg/µg in control) and a prolonged Ca(2+) transient half-width (Ca(50) = 232.8 ± 33.3 vs. 101.7 ± 19.8 ms). The use of growth-factor-reduced Matrigel, instead of standard Matrigel did not alter the obtained results suggesting enhanced cell-matrix interactions rather than growth factor supplementation as an underlying cause for the measured increase in contractile force. In summary, biomaterial-based manipulation of cell-matrix interactions represents an important target for improving contractile force generation in engineered skeletal muscle.


Assuntos
Bioengenharia/métodos , Matriz Extracelular/metabolismo , Músculo Esquelético/patologia , Animais , Cálcio/metabolismo , Células Cultivadas , Hidrogéis/química , Ratos , Ratos Sprague-Dawley
3.
Am J Physiol Heart Circ Physiol ; 295(1): H390-400, 2008 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-18502901

RESUMO

Well-controlled studies of the structural and functional interactions between cardiomyocytes and other cells are essential for understanding heart pathophysiology and for the further development of safe and efficient cell therapies. We established a novel in vitro assay composed of a large number of individual micropatterned cell pairs with reproducible shape, size, and region of cell-cell contact. This assay was applied to quantify and compare the frequency of expression and distribution of electrical (connexin43) and mechanical (N-cadherin) coupling proteins in 5,000 cell pairs made of cardiomyocytes (CMs), cardiac fibroblasts (CFs), skeletal myoblasts (SKMs), and mesenchymal stem cells (MSCs). We found that for all cell pair types, side-side contacts between two cells formed 4.5-14.3 times more often than end-end contacts. Both connexin43 and N-cadherin were expressed in all homotypic CM pairs but in only 13.4-91.6% of pairs containing noncardiomyocytes, where expression was either junctional (at the site of cell-cell contact) or diffuse (inside the cytoplasm). CM expression was exclusively junctional in homotypic pairs but predominantly diffuse in heterotypic pairs. Noncardiomyocyte homotypic pairs exhibited diffuse expression 1.7-8.7 times more often than junctional expression, which was increased 2.6-4.4 times in heterotypic pairs. Junctional connexin43 and N-cadherin expression, respectively, were found in 38.6 +/- 7.3 and 39.6 +/- 6.2% of CM-MSC pairs, 21.9 +/- 5.0 and 13.6 +/- 1.9% of CM-SKM pairs, and in only 3.8-9.6% of CM-CF pairs. Measured frequencies of protein expression and distribution were stable for at least 4 days. Described studies in micropatterned cell pairs shed new light on cellular interactions relevant for cardiac function and cell therapies.


Assuntos
Bioensaio , Comunicação Celular , Fibroblastos/metabolismo , Células-Tronco Mesenquimais/metabolismo , Mioblastos Esqueléticos/metabolismo , Miócitos Cardíacos/metabolismo , Animais , Animais Recém-Nascidos , Caderinas/metabolismo , Adesão Celular , Forma Celular , Células Cultivadas , Técnicas de Cocultura , Conexina 43/metabolismo , Citoplasma/metabolismo , Junções Intercelulares/metabolismo , Ratos , Ratos Sprague-Dawley , Reprodutibilidade dos Testes , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...