Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Neurosci ; 44(24)2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38749704

RESUMO

General anesthetics disrupt brain network dynamics through multiple pathways, in part through postsynaptic potentiation of inhibitory ion channels as well as presynaptic inhibition of neuroexocytosis. Common clinical general anesthetic drugs, such as propofol and isoflurane, have been shown to interact and interfere with core components of the exocytic release machinery to cause impaired neurotransmitter release. Recent studies however suggest that these drugs do not affect all synapse subtypes equally. We investigated the role of the presynaptic release machinery in multiple neurotransmitter systems under isoflurane general anesthesia in the adult female Drosophila brain using live-cell super-resolution microscopy and optogenetic readouts of exocytosis and neural excitability. We activated neurotransmitter-specific mushroom body output neurons and imaged presynaptic function under isoflurane anesthesia. We found that isoflurane impaired synaptic release and presynaptic protein dynamics in excitatory cholinergic synapses. In contrast, isoflurane had little to no effect on inhibitory GABAergic or glutamatergic synapses. These results present a distinct inhibitory mechanism for general anesthesia, whereby neuroexocytosis is selectively impaired at excitatory synapses, while inhibitory synapses remain functional. This suggests a presynaptic inhibitory mechanism that complements the other inhibitory effects of these drugs.


Assuntos
Encéfalo , Proteínas de Drosophila , Isoflurano , Proteínas SNARE , Sinapses , Animais , Sinapses/efeitos dos fármacos , Sinapses/metabolismo , Sinapses/fisiologia , Feminino , Proteínas SNARE/metabolismo , Isoflurano/farmacologia , Encéfalo/metabolismo , Encéfalo/efeitos dos fármacos , Proteínas de Drosophila/metabolismo , Proteínas de Drosophila/genética , Drosophila , Anestésicos Inalatórios/farmacologia , Transmissão Sináptica/fisiologia , Transmissão Sináptica/efeitos dos fármacos , Corpos Pedunculados/efeitos dos fármacos , Corpos Pedunculados/metabolismo , Corpos Pedunculados/fisiologia
2.
eNeuro ; 8(3)2021.
Artigo em Inglês | MEDLINE | ID: mdl-33875453

RESUMO

Super-resolution microscopy provides valuable insight for understanding the nanoscale organization within living tissue, although this method is typically restricted to cultured or dissociated cells. Here, we develop a method to track the mobility of individual proteins in ex vivo adult Drosophila melanogaster brains, focusing on a key component of the presynaptic release machinery, syntaxin1A (Sx1a). We show that individual Sx1a dynamics can be reliably tracked within neurons in the whole fly brain, and that the mobility of Sx1a molecules increases following conditional neural stimulation. We then apply this preparation to the problem of general anesthesia, to address how different anesthetics might affect single molecule dynamics in intact brain synapses. We find that propofol, etomidate, and isoflurane significantly impair Sx1a mobility, while ketamine and sevoflurane have little effect. Resolving single molecule dynamics in intact fly brains provides a novel approach to link localized molecular effects with systems-level phenomena such as general anesthesia.


Assuntos
Anestésicos Inalatórios , Isoflurano , Animais , Encéfalo , Drosophila , Drosophila melanogaster , Sinapses
4.
Cardiovasc Res ; 116(8): 1434-1445, 2020 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-31628797

RESUMO

AIMS: Current treatment for congenital long QT syndrome Type 2 (cLQTS2), an electrical disorder that increases the risk of life-threatening cardiac arrhythmias, is aimed at reducing the incidence of arrhythmia triggers (beta-blockers) or terminating the arrhythmia after onset (implantable cardioverter-defibrillator). An alternative strategy is to target the underlying disease mechanism, which is reduced rapid delayed rectifier current (IKr) passed by Kv11.1 channels. Small molecule activators of Kv11.1 have been identified but the extent to which these can restore normal cardiac signalling in cLQTS2 backgrounds remains unclear. Here, we examined the ability of ICA-105574, an activator of Kv11.1 that impairs transition to the inactivated state, to restore function to heterozygous Kv11.1 channels containing either inactivation enhanced (T618S, N633S) or expression deficient (A422T) mutations. METHODS AND RESULTS: ICA-105574 effectively restored Kv11.1 current from heterozygous inactivation enhanced or expression defective mutant channels in heterologous expression systems. In a human-induced pluripotent stem cell-derived cardiomyocyte (hiPSC-CM) model of cLQTS2 containing the expression defective Kv11.1 mutant A422T, cardiac repolarization, estimated from the duration of calcium transients in isolated cells and the rate corrected field potential duration (FPDc) in culture monolayers of cells, was significantly prolonged. The Kv11.1 activator ICA-105574 was able to reverse the prolonged repolarization in a concentration-dependent manner. However, at higher doses, ICA-105574 produced a shortening of the FPDc compared to controls. In vitro and in silico analysis suggests that this overcorrection occurs as a result of a temporal redistribution of the peak IKr to much earlier in the plateau phase of the action potential, which results in early repolarization. CONCLUSION: Kv11.1 activators, which target the primary disease mechanism, provide a possible treatment option for cLQTS2, with the caveat that there may be a risk of overcorrection that could itself be pro-arrhythmic.


Assuntos
Potenciais de Ação/efeitos dos fármacos , Antiarrítmicos/farmacologia , Benzamidas/farmacologia , Frequência Cardíaca/efeitos dos fármacos , Canal de Potássio Kv1.1/agonistas , Síndrome do QT Longo/tratamento farmacológico , Miócitos Cardíacos/efeitos dos fármacos , Animais , Antiarrítmicos/toxicidade , Benzamidas/toxicidade , Células CHO , Sinalização do Cálcio/efeitos dos fármacos , Cricetulus , Relação Dose-Resposta a Droga , Canal de Potássio ERG1/genética , Canal de Potássio ERG1/metabolismo , Células HEK293 , Humanos , Canal de Potássio Kv1.1/genética , Canal de Potássio Kv1.1/metabolismo , Síndrome do QT Longo/genética , Síndrome do QT Longo/metabolismo , Síndrome do QT Longo/fisiopatologia , Mutação , Miócitos Cardíacos/metabolismo , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...