Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Appl Radiat Isot ; 66(11): 1745-9, 2008 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-18515123

RESUMO

Over the last decade a number of models and approaches have been developed for the estimation of the exposure of non-human biota to ionising radiations. In some countries these are now being used in regulatory assessments. However, to date there has been no attempt to compare the outputs of the different models used. This paper presents the work of the International Atomic Energy Agency's EMRAS Biota Working Group which compares the predictions of a number of such models in model-model and model-data inter-comparisons.


Assuntos
Biodiversidade , Exposição Ambiental/análise , Modelos Biológicos , Monitoramento de Radiação/métodos , Simulação por Computador , Humanos , Internacionalidade , Doses de Radiação , Eficiência Biológica Relativa , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
2.
Environ Sci Technol ; 40(20): 6498-505, 2006 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-17120586

RESUMO

The FASSET Radiation Effects Database (FRED) constitutes a unique structured resource of the biological effects of ionizing radiation on non-human species mainly from temperate ecosystems, encompassing 26,000 primary data entries. Quality-assessed data were extracted from FRED and dose-effect relationships were constructed to provide estimates of ED50 and EDR10. These estimates are Doses (or Dose Rates) related to the percent change in the average level of the endpoint for a particular effect (50% or 10% for acute or chronic exposure regimes, respectively). Acute and chronic Species Sensitivity Distributions (SSDs) were built on the basis of these data sets, and the Assessment Factor Method (AFM) was applied when data were too scarce. The Hazardous Dose corresponding to 5% of species acutely affected at the 50% effect level varied from 1 to 5.5 Gy according to the ecosystem. For chronic gamma external irradiation exposure, no-effect values varied from 10 microGy/h for freshwaters through application of the AFM to 67 microGy/h for terrestrial ecosystems, corresponding to the 5th percentile of the non-weighted SSD (vs 229 microGy/h when trophic weights are applied). These values are higher by ca. x50 to x100 than the upper bound of natural background, and lower than dose rates triggering effects at individual levels on contaminated sites.


Assuntos
Água Doce/análise , Poluentes Radioativos do Solo/análise , Poluentes Radioativos da Água/análise , Anfíbios/crescimento & desenvolvimento , Animais , Daphnia/crescimento & desenvolvimento , Daphnia/efeitos da radiação , Relação Dose-Resposta à Radiação , Ecossistema , Eucariotos/crescimento & desenvolvimento , Eucariotos/efeitos da radiação , Peixes/crescimento & desenvolvimento , Monitoramento de Radiação/métodos , Radiação Ionizante , Resíduos Radioativos/análise
3.
Mutat Res ; 603(1): 56-63, 2006 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-16378751

RESUMO

The compost worm Eisenia fetida is routinely used in ecotoxicological studies. A standard assay to assess genetic damage in this species would be extremely valuable. Since mitochondrial DNA (mtDNA) is known to exhibit an increased mutation rate following exposure to ionising radiation we assessed the validity of a mtDNA-based assay for measuring increases in mutation rate in laboratory-irradiated compost worms. To this end the mutation frequency in the mtDNA of the compost worm E. fetida was quantified following in vivo gamma-irradiation of adult worms in three dose groups. Five adult worms exposed to 1.4 mGy/h for 55 days (total dose 1.85 Gy), five adult worms exposed to 8.5 mGy/h for 55 days (total dose 11.22 Gy) and five adult control worms were used to assess the effect of irradiation on mtDNA mutation induction. DNA samples extracted from irradiated adult worms were used in high-fidelity PCR of a 486 bp region of mtDNA spanning the ATPase 8 gene, chosen for its high spontaneous mutation rate. PCR products were cloned and sequenced to identify mutations, with 89-102 clones successfully sequenced per individual. A significant elevation in mtDNA mutation frequency (p=0.032) was seen in worms exposed at the higher dose rate (8.5 mGy/h, total dose 11.22 Gy; mutation frequency 27.98+/-4.85 x 10(-5)mutations/bp) in comparison to controls (mutation frequency 12.68+/-3.06 x 10(-5)mutations/bp), but no elevation in mutation frequency (p=0.764) was seen for the lower dose rate (1.4 mGy/h, total dose 1.85 Gy; mutation frequency 13.74+/-1.29 x 10(-5)mutations/bp) compared with controls. This indicates that although the technique has the potential to detect an elevation in mutation frequency, it does not have sufficient sensitivity at the doses likely to be encountered in environmental monitoring scenarios.


Assuntos
DNA Mitocondrial/genética , DNA Mitocondrial/efeitos da radiação , Oligoquetos/genética , Animais , Bioensaio/métodos , Análise Mutacional de DNA , Relação Dose-Resposta à Radiação , Reação em Cadeia da Polimerase , Radiação Ionizante , Sensibilidade e Especificidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...