Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 15(1): 850, 2024 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-38346952

RESUMO

Conserved epitopes shared between virus subtypes are often subdominant, making it difficult to induce broadly reactive antibodies by immunization. Here, we generate a plasmid DNA mix vaccine that encodes protein heterodimers with sixteen different influenza A virus hemagglutinins (HA) representing all HA subtypes except H1 (group 1) and H7 (group 2). Each single heterodimer expresses two different HA subtypes and is targeted to MHC class II on antigen presenting cells (APC). Female mice immunized with the plasmid mix produce antibodies not only against the 16 HA subtypes, but also against non-included H1 and H7. We demonstrate that individual antibody molecules cross-react between different HAs. Furthermore, the mix vaccine induces T cell responses to conserved HA epitopes. Immunized mice are partially protected against H1 viruses. The results show that application of valency-based immuno-selection to diversified antigens can be used to direct antibody responses towards conserved (subdominant) epitopes on viral antigens.


Assuntos
Vacinas contra Influenza , Influenza Humana , Infecções por Orthomyxoviridae , Feminino , Camundongos , Animais , Humanos , Influenza Humana/prevenção & controle , Hemaglutininas , Anticorpos Antivirais , Epitopos , Glicoproteínas de Hemaglutininação de Vírus da Influenza , Infecções por Orthomyxoviridae/prevenção & controle
2.
Mol Ther ; 31(7): 2188-2205, 2023 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-36926694

RESUMO

Conventional influenza vaccines focus on hemagglutinin (HA). However, antibody responses to neuraminidase (NA) have been established as an independent correlate of protection. Here, we introduced the ectodomain of NA into DNA vaccines that, as translated dimeric vaccine proteins, target antigen-presenting cells (APCs). The targeting was mediated by an single-chain variable fragment specific for major histocompatibility complex (MHC) class II, which is genetically linked to NA via a dimerization motif. A single immunization of BALB/c mice elicited strong and long-lasting NA-specific antibodies that inhibited NA enzymatic activity and reduced viral replication. Vaccine-induced NA immunity completely protected against a homologous influenza virus and out-competed NA immunity induced by a conventional inactivated virus vaccine. The protection was mainly mediated by antibodies, although NA-specific T cells also contributed. APC-targeting and antigen bivalency were crucial for vaccine efficacy. The APC-targeted vaccine was potent at low doses of DNA, indicating a dose-sparing effect. Similar results were obtained with NA vaccines that targeted different surface molecules on dendritic cells. Interestingly, the protective efficacy of NA as antigen compared favorably with HA and therefore ought to receive more attention in influenza vaccine research.


Assuntos
Vacinas contra Influenza , Influenza Humana , Infecções por Orthomyxoviridae , Vacinas de DNA , Animais , Camundongos , Humanos , Influenza Humana/prevenção & controle , Neuraminidase/genética , Anticorpos Antivirais , Glicoproteínas de Hemaglutininação de Vírus da Influenza/genética , Antígenos de Histocompatibilidade Classe II , DNA , Camundongos Endogâmicos BALB C
3.
Cell Rep ; 39(9): 110901, 2022 05 31.
Artigo em Inglês | MEDLINE | ID: mdl-35649357

RESUMO

Antibodies are important for vaccine efficacy. Targeting antigens to antigen-presenting cells (APCs) increases antibody levels. Here, we explore the role of antigen valency in MHC class II (MHCII)-targeted vaccines delivered as DNA. We design heterodimeric proteins that carry either two identical (bivalent vaccines), or two different antigens (monovalent vaccines). Bivalent vaccines with two identical influenza hemagglutinins (HA) elicit higher amounts of anti-HA antibodies in mice than monovalent versions with two different HAs. Bivalent vaccines increase the levels of germinal center (GC) B cells and long-lived plasma cells. Only HA-bivalent vaccines completely protect mice against challenge with homologous influenza virus. Similar results are obtained with other antigens by targeting CD11c and Xcr1 on dendritic cells (DCs) or when administering the vaccine as protein with adjuvant. Bivalency probably increases B cell responses by cross-linking BCRs in readily observable DC-B cell synapses. These results are important for generating potent APC-targeted vaccines.


Assuntos
Vacinas Anticâncer , Vacinas contra Influenza , Vacinas de DNA , Animais , Anticorpos Antivirais , Células Apresentadoras de Antígenos , Hemaglutininas , Camundongos , Vacinas Combinadas , Vacinas de DNA/genética
4.
Mol Ther Methods Clin Dev ; 17: 378-392, 2020 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-32128342

RESUMO

Immunogenicity of DNA vaccines can be increased by constructing the DNA in such a way that it encodes secreted homodimeric fusion proteins that target antigen-presenting cells (APCs). In this study, we have developed novel APC-targeting vaccine molecules with an increased flexibility due to introduction of a heterodimerization motif. The heterodimeric proteins permit four different fusions within a single molecule, thus allowing expression of two different APC-targeting moieties and two different antigens. Two types of heterodimeric fusion proteins were developed that employed either the ACID/BASE or the Barnase/Barstar motifs, respectively. The ACID/BASE heterodimeric vaccines conferred protection against challenges with either influenza virus or tumor cells in separate preclinical models. The ACID/BASE motif was flexible since a large number of different targeting moieties and antigens could be introduced with maintenance of specificity, antigenicity, and secretion. APC-targeting ACID/BASE vaccines expressing two different antigens induced antibody and T cell responses against either of the two antigens. Heterodimeric ACID/BASE DNA vaccines were of approximately the same potency as previously reported homodimeric DNA vaccines. The flexibility and potency of the ACID/BASE format suggest that it could be a useful platform for DNA vaccines that encode APC-targeting fusion proteins.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...