Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Environ Geochem Health ; 46(6): 203, 2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38695991

RESUMO

Manganese (Mn) is of particular concern in groundwater, as low-level chronic exposure to aqueous Mn concentrations in drinking water can result in a variety of health and neurodevelopmental effects. Much of the global population relies on drinking water sourced from karst aquifers. Thus, we seek to assess the relative risk of Mn contamination in karst by investigating the Shenandoah Valley, VA region, as it is underlain by both karst and non-karst aquifers and much of the population relies on water wells and spring water. Water and soil samples were collected throughout the Shenandoah Valley, to supplement pre-existing well water and spring data from the National Water Information System and the Virginia Household Water Quality Program, totaling 1815 wells and 119 springs. Soils were analyzed using X-ray fluorescence and Mn K-Edge X-ray absorption near-edge structure spectroscopy. Factors such as soil type, soil geochemistry, and aquifer lithology were linked with each location to determine if correlations exist with aqueous Mn concentrations. Analyzing the distribution of Mn in drinking water sources suggests that water wells and springs within karst aquifers are preferable with respect to chronic Mn exposure, with < 4.9% of wells and springs in dolostone and limestone aquifers exceeding 100 ppb Mn, while sandstone and shale aquifers have a heightened risk, with > 20% of wells exceeding 100 ppb Mn. The geochemistry of associated soils and spatial relationships to various hydrologic and geologic features indicates that water interactions with aquifer lithology and soils contribute to aqueous Mn concentrations. Relationships between aqueous Mn in spring waters and Mn in soils indicate that increasing aqueous Mn is correlated with decreasing soil Mn(IV). These results point to redox conditions exerting a dominant control on Mn in this region.


Assuntos
Água Subterrânea , Manganês , Oxirredução , Solo , Poluentes Químicos da Água , Poços de Água , Manganês/análise , Água Subterrânea/química , Poluentes Químicos da Água/análise , Solo/química , Nascentes Naturais/química , Monitoramento Ambiental , Água Potável/química , Poluentes do Solo/análise , Poluentes do Solo/química , Espectrometria por Raios X , Exposição Ambiental
2.
Environ Sci Technol ; 54(6): 3570-3580, 2020 03 17.
Artigo em Inglês | MEDLINE | ID: mdl-32083848

RESUMO

Selenium (Se) redox chemistry is a determining factor for its environmental toxicity and mobility. Currently, millions of people are impacted by Se deficiency or toxicity, and in geologic history, several mass extinctions have been linked to extreme Se deficiency. Importantly, microbial activity and interactions with other biogeochemically active elements can drastically alter Se oxidation state and form, impacting its bioavailability. Here, we use wet geochemistry, spectroscopy, and electron microscopy to identify a cryptic, or hidden, Se cycle involving the reoxidation of biogenic volatile Se compounds in the presence of biogenic manganese [Mn(III, IV)] oxides and oxyhydroxides (hereafter referred to as "Mn oxides"). Using two common environmental Ascomycete fungi, Paraconiothyrium sporulosum and Stagonospora sp., we observed that aerobic Se(IV and VI) bioreduction to Se(0) and Se(-II) occurs simultaneously alongside the opposite redox biomineralization process of mycogenic Mn(II) oxidation to Mn oxides. Selenium bioreduction produced stable Se(0) nanoparticles and organoselenium compounds. However, mycogenic Mn oxides rapidly oxidized volatile Se products, recycling these compounds back to soluble forms. Given their abundance in natural systems, biogenic Mn oxides likely play an important role mediating Se biogeochemistry. Elucidating this cryptic Se cycle is essential for understanding and predicting Se behavior in diverse environmental systems.


Assuntos
Manganês , Selênio , Compostos de Manganês , Oxirredução , Óxidos
3.
Environ Sci Technol ; 51(6): 3187-3196, 2017 03 21.
Artigo em Inglês | MEDLINE | ID: mdl-28195711

RESUMO

Layered Mn oxide minerals (phyllomanganates) often control trace metal fate in natural systems. The strong uptake of metals such as Ni and Zn by phyllomanganates results from adsorption on or incorporation into vacancy sites. Mn(II) also binds to vacancies and subsequent comproportionation with structural Mn(IV) may alter sheet structures by forming larger and distorted Mn(III)O6 octahedra. Such Mn(II)-phyllomanganate reactions may thus alter metal uptake by blocking key reactive sites. Here we investigate the effect of Mn(II) on Ni and Zn binding to phyllomanganates of varying initial vacancy content (δ-MnO2, hexagonal birnessite, and triclinic birnessite) at pH 4 and 7 under anaerobic conditions. Dissolved Mn(II) decreases macroscopic Ni and Zn uptake at pH 4 but not pH 7. Extended X-ray absorption fine structure spectroscopy demonstrates that decreased uptake at pH 4 corresponds with altered Ni and Zn adsorption mechanisms. These metals transition from binding in the interlayer to sheet edges, with Zn increasing its tetrahedrally coordinated fraction. These effects on metal uptake and binding correlate with Mn(II)-induced structural changes, which are more substantial at pH 4 than 7. Through these structural effects and the pH-dependence of Mn(II)-metal competitive adsorption, system pH largely controls metal binding to phyllomanganates in the presence of dissolved Mn(II).


Assuntos
Oxirredução , Zinco , Adsorção , Metais/química , Espectroscopia por Absorção de Raios X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...