Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Clin Transl Sci ; 14(6): 2139-2145, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34080307

RESUMO

Mechanical ventilation (MV) is a clinical tool providing adequate alveolar ventilation in patients that require respiratory support. Although a life-saving intervention for critically ill patients, prolonged MV results in the rapid development of inspiratory muscle weakness due to both diaphragmatic atrophy and contractile dysfunction; collectively known as "ventilator-induced diaphragm dysfunction" (VIDD). VIDD is a severe clinical problem because diaphragmatic weakness is a risk factor for difficulties in weaning patients from MV. Currently, no standard treatment to prevent VIDD exists. Nonetheless, growing evidence reveals that hydrogen sulfide (H2 S) possesses cytoprotective properties capable of protecting skeletal muscles against several hallmarks of VIDD, including oxidative damage, accelerated proteolysis, and mitochondrial damage. Therefore, we used an established animal model of MV to test the hypothesis that treatment with sodium sulfide (H2 S donor) will defend against VIDD. Our results confirm that sodium sulfide was sufficient to protect the diaphragm against both MV-induced fiber atrophy and contractile dysfunction. H2 S prevents MV-induced damage to diaphragmatic mitochondria as evidenced by protection against mitochondrial uncoupling. Moreover, treatment with sodium sulfide prevented the MV-induced activation of the proteases, calpain, and caspase-3 in the diaphragm. Taken together, these results support the hypothesis that treatment with a H2 S donor protects the diaphragm against VIDD. These outcomes provide the first evidence that H2 S has therapeutic potential to protect against MV-induced diaphragm weakness and to reduce difficulties in weaning patients from the ventilator. Study Highlights WHAT IS THE CURRENT KNOWLEDGE ON THE TOPIC? Mechanical ventilation (MV) results in diaphragm atrophy and contractile dysfunction, known as ventilator-induced diaphragm dysfunction (VIDD). VIDD is important because diaphragm weakness is a risk factor for problems in weaning patients from MV. Currently, no accepted treatment exists to protect against VIDD. Growing evidence reveals that hydrogen sulfide (H2 S) donors protect skeletal muscle against ischemia-reperfusion-induced injury. Nonetheless, it is unknown if treatment with a H2 S donor can protect against VIDD. WHAT QUESTION DID THIS STUDY ADDRESS? Can treatment with an H2 S donor protect against VIDD? WHAT DOES THIS STUDY ADD TO OUR KNOWLEDGE? This study provides the first evidence that treatment with a H2 S donor protects against VIDD. HOW MIGHT THIS CHANGE CLINICAL PHARMACOLOGY OR TRANSLATIONAL SCIENCE? These new findings provide the basis for further exploration of H2 S donors as a therapy to prevent VIDD and reduce the risk of problems in weaning patients from MV.


Assuntos
Atrofia/prevenção & controle , Sulfeto de Hidrogênio/metabolismo , Sulfeto de Hidrogênio/farmacologia , Contração Muscular/efeitos dos fármacos , Respiração Artificial/efeitos adversos , Animais , Distribuição Aleatória , Ratos , Ratos Sprague-Dawley
2.
J Appl Physiol (1985) ; 113(9): 1495-504, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22984247

RESUMO

To examine potential age-specific adaptations in skeletal muscle size and myofiber contractile physiology in response to aerobic exercise, seven young (YM; 20 ± 1 yr) and six older men (OM; 74 ± 3 yr) performed 12 wk of cycle ergometer training. Muscle biopsies were obtained from the vastus lateralis to determine size and contractile properties of isolated slow [myosin heavy chain (MHC) I] and fast (MHC IIa) myofibers, MHC composition, and muscle protein concentration. Aerobic capacity was higher (P < 0.05) after training in both YM (16 ± 2%) and OM (13 ± 3%). Quadriceps muscle volume, determined via MRI, was 5 ± 1 and 6 ± 1% greater (P < 0.05) after training for YM and OM, respectively, which was associated with an increase in MHC I myofiber cross-sectional area (CSA), independent of age. MHC I peak power was higher (P < 0.05) after training for both YM and OM, while MHC IIa peak power was increased (P < 0.05) with training in OM only. MHC I and MHC IIa myofiber peak and normalized (peak force/CSA) force were preserved with training in OM, while MHC I peak force/CSA and MHC IIa peak force were lower (P < 0.05) after training in YM. The age-dependent adaptations in myofiber function were not due to changes in protein content, as total muscle protein and myofibrillar protein concentration were unchanged (P > 0.05) with training. Training reduced (P < 0.05) the proportion of MHC IIx isoform, independent of age, whereas no other changes in MHC composition were observed. These data suggest relative improvements in muscle size and aerobic capacity are similar between YM and OM, while adaptations in myofiber contractile function showed a general improvement in OM. Training-related increases in MHC I and MHC IIa peak power reveal that skeletal muscle of OM is responsive to aerobic exercise training and further support the use of aerobic exercise for improving cardiovascular and skeletal muscle health in older individuals.


Assuntos
Exercício Físico/fisiologia , Músculo Esquelético/fisiologia , Adaptação Fisiológica , Idoso , Envelhecimento/patologia , Envelhecimento/fisiologia , Teste de Esforço , Humanos , Hipertrofia , Masculino , Contração Muscular/fisiologia , Fibras Musculares Esqueléticas/fisiologia , Proteínas Musculares/metabolismo , Músculo Esquelético/patologia , Cadeias Pesadas de Miosina/metabolismo , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...