Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Am J Physiol Regul Integr Comp Physiol ; 321(2): R100-R111, 2021 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-34132115

RESUMO

Hyperbaric oxygen (HBO2) is breathing >1 atmosphere absolute (ATA; 101.3 kPa) O2 and is used in HBO2 therapy and undersea medicine. What limits the use of HBO2 is the risk of developing central nervous system (CNS) oxygen toxicity (CNS-OT). A promising therapy for delaying CNS-OT is ketone metabolic therapy either through diet or exogenous ketone ester (KE) supplement. Previous studies indicate that KE induces ketosis and delays the onset of CNS-OT; however, the effects of exogeneous KE on cognition and performance are understudied. Accordingly, we tested the hypothesis that oral gavage with 7.5 g/kg induces ketosis and increases the latency time to seizure (LSz) without impairing cognition and performance. A single oral dose of 7.5 g/kg KE increases systemic ß-hydroxybutyrate (BHB) levels within 0.5 h and remains elevated for 4 h. Male rats were separated into three groups: control (no gavage), water-gavage, or KE-gavage, and were subjected to behavioral testing while breathing 1 ATA (101.3 kPa) of air. Testing included the following: DigiGait (DG), light/dark (LD), open field (OF), and novel object recognition (NOR). There were no adverse effects of KE on gait or motor performance (DG), cognition (NOR), and anxiety (LD, OF). In fact, KE had an anxiolytic effect (OF, LD). The LSz during exposure to 5 ATA (506.6 kPa) O2 (≤90 min) increased 307% in KE-treated rats compared with control rats. In addition, KE prevented seizures in some animals. We conclude that 7.5 g/kg is an optimal dose of KE in the male Sprague-Dawley rat model of CNS-OT.


Assuntos
Anticonvulsivantes/farmacologia , Comportamento Animal/efeitos dos fármacos , Encéfalo/efeitos dos fármacos , Cognição/efeitos dos fármacos , Ésteres/farmacologia , Cetonas/farmacologia , Atividade Motora/efeitos dos fármacos , Convulsões/prevenção & controle , Animais , Anticonvulsivantes/farmacocinética , Anticonvulsivantes/toxicidade , Encéfalo/fisiopatologia , Modelos Animais de Doenças , Ésteres/farmacocinética , Ésteres/toxicidade , Oxigenoterapia Hiperbárica/efeitos adversos , Cetonas/farmacocinética , Cetonas/toxicidade , Masculino , Ratos Sprague-Dawley , Tempo de Reação , Convulsões/etiologia , Convulsões/fisiopatologia , Convulsões/psicologia
2.
J Appl Physiol (1985) ; 130(6): 1936-1954, 2021 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-33661724

RESUMO

The use of hyperbaric oxygen (HBO2) in hyperbaric and undersea medicine is limited by the risk of seizures [i.e., central nervous system (CNS) oxygen toxicity, CNS-OT] resulting from increased production of reactive oxygen species (ROS) in the CNS. Importantly, ketone supplementation has been shown to delay onset of CNS-OT in rats by ∼600% in comparison with control groups (D'Agostino DP, Pilla R, Held HE, Landon CS, Puchowicz M, Brunengraber H, Ari C, Arnold P, Dean JB. Am J Physiol Regu Integr Comp Physiol 304: R829-R836, 2013). We have tested the hypothesis that ketone body supplementation inhibits ROS production during exposure to hyperoxygenation in rat brainstem cells. We measured the rate of cellular superoxide ([Formula: see text]) production in the caudal solitary complex (cSC) in rat brain slices using a fluorogenic dye, dihydroethidium (DHE), during exposure to control O2 (0.4 ATA) followed by 1-2 h of normobaric oxygen (NBO2) (0.95 ATA) and HBO2 (1.95, and 4.95 ATA) hyperoxia, with and without a 50:50 mixture of ketone salts (KS) dl-ß-hydroxybutyrate + acetoacetate. All levels of hyperoxia tested stimulated [Formula: see text] production similarly in cSC cells and coexposure to 5 mM KS during hyperoxia significantly blunted the rate of increase in DHE fluorescence intensity during exposure to hyperoxia. Not all cells tested produced [Formula: see text] at the same rate during exposure to control O2 and hyperoxygenation; cells that increased [Formula: see text] production by >25% during hyperoxia in comparison with baseline were inhibited by KS, whereas cells that did not reach that threshold during hyperoxia were unaffected by KS. These findings support the hypothesis that ketone supplementation decreases the steady-state concentrations of superoxide produced during exposure to NBO2 and HBO2 hyperoxia.NEW & NOTEWORTHY Exposure of rat medullary tissue slices to levels of O2 that mimic those that cause seizures in rats stimulates cellular superoxide ([Formula: see text]) production to varying degrees. Cellular [Formula: see text] generation in the caudal solitary complex is variable during exposure to control O2 and hyperoxia and significantly decreases during ketone supplementation. Our findings support the theory that ketone supplementation delays onset of central nervous system oxygen toxicity in mammals, in part, by decreasing [Formula: see text] production in O2-sensitive neurons.


Assuntos
Oxigenoterapia Hiperbárica , Hiperóxia , Animais , Cetonas , Oxigênio , Ratos , Ratos Sprague-Dawley , Sais , Superóxidos
3.
Redox Biol ; 27: 101159, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-30902504

RESUMO

Hyperbaric oxygen (HBO2) is breathed during hyperbaric oxygen therapy and during certain undersea pursuits in diving and submarine operations. What limits exposure to HBO2 in these situations is the acute onset of central nervous system oxygen toxicity (CNS-OT) following a latent period of safe oxygen breathing. CNS-OT presents as various non-convulsive signs and symptoms, many of which appear to be of brainstem origin involving cranial nerve nuclei and autonomic and cardiorespiratory centers, which ultimately spread to higher cortical centers and terminate as generalized tonic-clonic seizures. The initial safe latent period makes the use of HBO2 practical in hyperbaric and undersea medicine; however, the latent period is highly variable between individuals and within the same individual on different days, making it difficult to predict onset of toxic indications. Consequently, currently accepted guidelines for safe HBO2 exposure are highly conservative. This review examines the disorder of CNS-OT and summarizes current ideas on its underlying pathophysiology, including specific areas of the CNS and fundamental neural and redox signaling mechanisms that are thought to be involved in seizure genesis and propagation. In addition, conditions that accelerate the onset of seizures are discussed, as are current mitigation strategies under investigation for neuroprotection against redox stress while breathing HBO2 that extend the latent period, thus enabling safer and longer exposures for diving and medical therapies.


Assuntos
Sistema Nervoso Central/efeitos dos fármacos , Sistema Nervoso Central/fisiologia , Oxigênio/efeitos adversos , Oxigênio/farmacologia , Animais , Humanos , Oxigenoterapia Hiperbárica/métodos , Oxirredução/efeitos dos fármacos , Respiração/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...