Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Dev Cell ; 59(14): 1783-1793.e5, 2024 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-38663399

RESUMO

Dynamin assembles as a helical polymer at the neck of budding endocytic vesicles, constricting the underlying membrane as it progresses through the GTPase cycle to sever vesicles from the plasma membrane. Although atomic models of the dynamin helical polymer bound to guanosine triphosphate (GTP) analogs define earlier stages of membrane constriction, there are no atomic models of the assembled state post-GTP hydrolysis. Here, we used cryo-EM methods to determine atomic structures of the dynamin helical polymer assembled on lipid tubules, akin to necks of budding endocytic vesicles, in a guanosine diphosphate (GDP)-bound, super-constricted state. In this state, dynamin is assembled as a 2-start helix with an inner lumen of 3.4 nm, primed for spontaneous fission. Additionally, by cryo-electron tomography, we trapped dynamin helical assemblies within HeLa cells using the GTPase-defective dynamin K44A mutant and observed diverse dynamin helices, demonstrating that dynamin can accommodate a range of assembled complexes in cells that likely precede membrane fission.


Assuntos
Membrana Celular , Microscopia Crioeletrônica , Dinaminas , Guanosina Trifosfato , Microscopia Crioeletrônica/métodos , Humanos , Membrana Celular/metabolismo , Células HeLa , Dinaminas/metabolismo , Dinaminas/química , Dinaminas/genética , Guanosina Trifosfato/metabolismo , Hidrólise , Guanosina Difosfato/metabolismo , Modelos Moleculares , Endocitose/fisiologia
2.
Nature ; 620(7976): 1109-1116, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37612506

RESUMO

Dominant optic atrophy is one of the leading causes of childhood blindness. Around 60-80% of cases1 are caused by mutations of the gene that encodes optic atrophy protein 1 (OPA1), a protein that has a key role in inner mitochondrial membrane fusion and remodelling of cristae and is crucial for the dynamic organization and regulation of mitochondria2. Mutations in OPA1 result in the dysregulation of the GTPase-mediated fusion process of the mitochondrial inner and outer membranes3. Here we used cryo-electron microscopy methods to solve helical structures of OPA1 assembled on lipid membrane tubes, in the presence and absence of nucleotide. These helical assemblies organize into densely packed protein rungs with minimal inter-rung connectivity, and exhibit nucleotide-dependent dimerization of the GTPase domains-a hallmark of the dynamin superfamily of proteins4. OPA1 also contains several unique secondary structures in the paddle domain that strengthen its membrane association, including membrane-inserting helices. The structural features identified in this study shed light on the effects of pathogenic point mutations on protein folding, inter-protein assembly and membrane interactions. Furthermore, mutations that disrupt the assembly interfaces and membrane binding of OPA1 cause mitochondrial fragmentation in cell-based assays, providing evidence of the biological relevance of these interactions.


Assuntos
Microscopia Crioeletrônica , GTP Fosfo-Hidrolases , Mitocôndrias , GTP Fosfo-Hidrolases/química , GTP Fosfo-Hidrolases/genética , GTP Fosfo-Hidrolases/metabolismo , GTP Fosfo-Hidrolases/ultraestrutura , Fusão de Membrana , Mitocôndrias/enzimologia , Mitocôndrias/metabolismo , Mitocôndrias/patologia , Dinâmica Mitocondrial , Membranas Mitocondriais/metabolismo , Mutação , Nucleotídeos/metabolismo , Ligação Proteica/genética , Domínios Proteicos , Dobramento de Proteína , Multimerização Proteica , Estrutura Secundária de Proteína , Humanos
5.
Nat Commun ; 13(1): 3697, 2022 06 27.
Artigo em Inglês | MEDLINE | ID: mdl-35760780

RESUMO

Membrane budding entails forces to transform flat membrane into vesicles essential for cell survival. Accumulated studies have identified coat-proteins (e.g., clathrin) as potential budding factors. However, forces mediating many non-coated membrane buddings remain unclear. By visualizing proteins in mediating endocytic budding in live neuroendocrine cells, performing in vitro protein reconstitution and physical modeling, we discovered how non-coated-membrane budding is mediated: actin filaments and dynamin generate a pulling force transforming flat membrane into Λ-shape; subsequently, dynamin helices surround and constrict Λ-profile's base, transforming Λ- to Ω-profile, and then constrict Ω-profile's pore, converting Ω-profiles to vesicles. These mechanisms control budding speed, vesicle size and number, generating diverse endocytic modes differing in these parameters. Their impact is widespread beyond secretory cells, as the unexpectedly powerful functions of dynamin and actin, previously thought to mediate fission and overcome tension, respectively, may contribute to many dynamin/actin-dependent non-coated-membrane buddings, coated-membrane buddings, and other membrane remodeling processes.


Assuntos
Actinas , Endocitose , Actinas/metabolismo , Membrana Celular/metabolismo , Clatrina/metabolismo , Invaginações Revestidas da Membrana Celular/metabolismo , Dinaminas/metabolismo
6.
Biomolecules ; 12(4)2022 04 16.
Artigo em Inglês | MEDLINE | ID: mdl-35454173

RESUMO

Guanine nucleotides can flip between a North and South conformation in the ribose moiety. To test the enzymatic activity of GTPases bound to nucleotides in the two conformations, we generated methanocarba guanine nucleotides in the North or South envelope conformations, i.e., (N)-GTP and (S)-GTP, respectively. With dynamin as a model system, we examined the effects of (N)-GTP and (S)-GTP on dynamin-mediated membrane constriction, an activity essential for endocytosis. Dynamin membrane constriction and fission activity are dependent on GTP binding and hydrolysis, but the effect of the conformational state of the GTP nucleotide on dynamin activity is not known. After reconstituting dynamin-mediated lipid tubulation and membrane constriction in vitro, we observed via cryo-electron microscopy (cryo-EM) that (N)-GTP, but not (S)-GTP, enables the constriction of dynamin-decorated lipid tubules. These findings suggest that the activity of dynamin is dependent on the conformational state of the GTP nucleotide. However, a survey of nucleotide ribose conformations associated with dynamin structures in nature shows almost exclusively the (S)-conformation. The explanation for this mismatch of (N) vs. (S) required for GTP analogues in a dynamin-mediated process will be addressed in future studies.


Assuntos
Nucleotídeos de Guanina , Ribose , Microscopia Crioeletrônica , Dinaminas/metabolismo , Guanosina Trifosfato/química , Lipídeos
7.
Cell ; 185(7): 1143-1156.e13, 2022 03 31.
Artigo em Inglês | MEDLINE | ID: mdl-35294859

RESUMO

Transmembrane ß barrel proteins are folded into the outer membrane (OM) of Gram-negative bacteria by the ß barrel assembly machinery (BAM) via a poorly understood process that occurs without known external energy sources. Here, we used single-particle cryo-EM to visualize the folding dynamics of a model ß barrel protein (EspP) by BAM. We found that BAM binds the highly conserved "ß signal" motif of EspP to correctly orient ß strands in the OM during folding. We also found that the folding of EspP proceeds via "hybrid-barrel" intermediates in which membrane integrated ß sheets are attached to the essential BAM subunit, BamA. The structures show an unprecedented deflection of the membrane surrounding the EspP intermediates and suggest that ß sheets progressively fold toward BamA to form a ß barrel. Along with in vivo experiments that tracked ß barrel folding while the OM tension was modified, our results support a model in which BAM harnesses OM elasticity to accelerate ß barrel folding.


Assuntos
Proteínas da Membrana Bacteriana Externa/ultraestrutura , Dobramento de Proteína , Proteínas da Membrana Bacteriana Externa/metabolismo , Microscopia Crioeletrônica , Escherichia coli/metabolismo , Proteínas de Escherichia coli/metabolismo
8.
J Cell Biol ; 221(2)2022 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-34817557

RESUMO

ER network formation depends on membrane fusion by the atlastin (ATL) GTPase. In humans, three paralogs are differentially expressed with divergent N- and C-terminal extensions, but their respective roles remain unknown. This is partly because, unlike Drosophila ATL, the fusion activity of human ATLs has not been reconstituted. Here, we report successful reconstitution of fusion activity by the human ATLs. Unexpectedly, the major splice isoforms of ATL1 and ATL2 are each autoinhibited, albeit to differing degrees. For the more strongly inhibited ATL2, autoinhibition mapped to a C-terminal α-helix is predicted to be continuous with an amphipathic helix required for fusion. Charge reversal of residues in the inhibitory domain strongly activated its fusion activity, and overexpression of this disinhibited version caused ER collapse. Neurons express an ATL2 splice isoform whose sequence differs in the inhibitory domain, and this form showed full fusion activity. These findings reveal autoinhibition and alternate splicing as regulators of atlastin-mediated ER fusion.


Assuntos
Proteínas de Ligação ao GTP/química , Proteínas de Ligação ao GTP/metabolismo , Fusão de Membrana , Proteínas de Membrana/química , Proteínas de Membrana/metabolismo , Animais , Células COS , Chlorocebus aethiops , Retículo Endoplasmático/metabolismo , Proteínas de Ligação ao GTP/antagonistas & inibidores , Humanos , Proteínas de Membrana/antagonistas & inibidores , Mutação/genética , Estrutura Secundária de Proteína
9.
Dev Cell ; 56(8): 1131-1146.e3, 2021 04 19.
Artigo em Inglês | MEDLINE | ID: mdl-33823128

RESUMO

Clathrin-mediated endocytosis is the primary pathway for receptor and cargo internalization in eukaryotic cells. It is characterized by a polyhedral clathrin lattice that coats budding membranes. The mechanism and control of lattice assembly, curvature, and vesicle formation at the plasma membrane has been a matter of long-standing debate. Here, we use platinum replica and cryoelectron microscopy and tomography to present a structural framework of the pathway. We determine the shape and size parameters common to clathrin-mediated endocytosis. We show that clathrin sites maintain a constant surface area during curvature across multiple cell lines. Flat clathrin is present in all cells and spontaneously curves into coated pits without additional energy sources or recruited factors. Finally, we attribute curvature generation to loosely connected and pentagon-containing flat lattices that can rapidly curve when a flattening force is released. Together, these data present a universal mechanistic model of clathrin-mediated endocytosis.


Assuntos
Membrana Celular/fisiologia , Membrana Celular/ultraestrutura , Clatrina/metabolismo , Adesividade , Animais , Linhagem Celular , Colesterol/metabolismo , Microscopia Crioeletrônica , Humanos , Masculino , Camundongos , Modelos Biológicos , Ratos
10.
Nat Methods ; 17(9): 897-900, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32778833

RESUMO

We present an approach for preparing cryo-electron microscopy (cryo-EM) grids to study short-lived molecular states. Using piezoelectric dispensing, two independent streams of ~50-pl droplets of sample are deposited within 10 ms of each other onto the surface of a nanowire EM grid, and the mixing reaction stops when the grid is vitrified in liquid ethane ~100 ms later. We demonstrate this approach for four biological systems where short-lived states are of high interest.


Assuntos
Microscopia Crioeletrônica/métodos , Nanofios , Robótica , Manejo de Espécimes/métodos , Fatores de Tempo
11.
Nat Cell Biol ; 22(6): 674-688, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32451441

RESUMO

The dynamin GTPase is known to bundle actin filaments, but the underlying molecular mechanism and physiological relevance remain unclear. Our genetic analyses revealed a function of dynamin in propelling invasive membrane protrusions during myoblast fusion in vivo. Using biochemistry, total internal reflection fluorescence microscopy, electron microscopy and cryo-electron tomography, we show that dynamin bundles actin while forming a helical structure. At its full capacity, each dynamin helix captures 12-16 actin filaments on the outer rim of the helix. GTP hydrolysis by dynamin triggers disassembly of fully assembled dynamin helices, releasing free dynamin dimers/tetramers and facilitating Arp2/3-mediated branched actin polymerization. The assembly/disassembly cycles of dynamin promote continuous actin bundling to generate mechanically stiff actin super-bundles. Super-resolution and immunogold platinum replica electron microscopy revealed dynamin along actin bundles at the fusogenic synapse. These findings implicate dynamin as a unique multifilament actin-bundling protein that regulates the dynamics and mechanical strength of the actin cytoskeletal network.


Assuntos
Citoesqueleto de Actina/metabolismo , Actinas/metabolismo , Comunicação Celular , Drosophila melanogaster/metabolismo , Dinaminas/metabolismo , Endocitose , Complexo 2-3 de Proteínas Relacionadas à Actina/metabolismo , Actinas/genética , Sequência de Aminoácidos , Animais , Drosophila melanogaster/genética , Dinaminas/genética , Feminino , Guanosina Trifosfato/metabolismo , Masculino , Mioblastos/citologia , Mioblastos/metabolismo , Ligação Proteica , Homologia de Sequência
12.
Trends Cell Biol ; 29(3): 257-273, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30527453

RESUMO

Dynamin superfamily proteins (DSPs) mediate membrane fission and fusion necessary for endocytosis, organelle biogenesis and maintenance, as well as for bacterial cytokinesis. They also function in the innate immune response to pathogens and in organizing the cytoskeleton. In this review, we summarize the current understanding of the molecular mechanism of DSPs, with emphasis on the structural basis of function. Studies from the past decade on the structure and mechanism of DSPs enable comparative analysis of shared mechanisms and unique features of this protein family.


Assuntos
Dinaminas/química , Dinaminas/metabolismo , Animais , Dinaminas/classificação , Humanos , Conformação Proteica
13.
Nature ; 564(7734): E6, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30377313

RESUMO

In Figs. 2b and 3d of this Letter, the labels 'Dynamin 1' and 'Overlay' were inadvertently swapped. This has been corrected online.

14.
Nature ; 560(7717): 258-262, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-30069048

RESUMO

Membrane fission is a fundamental process in the regulation and remodelling of cell membranes. Dynamin, a large GTPase, mediates membrane fission by assembling around, constricting and cleaving the necks of budding vesicles1. Here we report a 3.75 Å resolution cryo-electron microscopy structure of the membrane-associated helical polymer of human dynamin-1 in the GMPPCP-bound state. The structure defines the helical symmetry of the dynamin polymer and the positions of its oligomeric interfaces, which were validated by cell-based endocytosis assays. Compared to the lipid-free tetramer form2, membrane-associated dynamin binds to the lipid bilayer with its pleckstrin homology domain (PHD) and self-assembles across the helical rungs via its guanine nucleotide-binding (GTPase) domain3. Notably, interaction with the membrane and helical assembly are accommodated by a severely bent bundle signalling element (BSE), which connects the GTPase domain to the rest of the protein. The BSE conformation is asymmetric across the inter-rung GTPase interface, and is unique compared to all known nucleotide-bound states of dynamin. The structure suggests that the BSE bends as a result of forces generated from the GTPase dimer interaction that are transferred across the stalk to the PHD and lipid membrane. Mutations that disrupted the BSE kink impaired endocytosis. We also report a 10.1 Å resolution cryo-electron microscopy map of a super-constricted dynamin polymer showing localized conformational changes at the BSE and GTPase domains, induced by GTP hydrolysis, that drive membrane constriction. Together, our results provide a structural basis for the mechanism of action of dynamin on the lipid membrane.


Assuntos
Biopolímeros/química , Biopolímeros/metabolismo , Membrana Celular/metabolismo , Membrana Celular/ultraestrutura , Microscopia Crioeletrônica , Dinamina I/metabolismo , Dinamina I/ultraestrutura , Biopolímeros/genética , Membrana Celular/química , Dinamina I/química , Dinamina I/genética , Endocitose/genética , Guanosina Trifosfato/análogos & derivados , Guanosina Trifosfato/química , Guanosina Trifosfato/metabolismo , Humanos , Hidrólise , Modelos Moleculares , Proteínas Mutantes/química , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , Proteínas Mutantes/ultraestrutura , Mutação , Domínios Proteicos , Multimerização Proteica
15.
Proc Natl Acad Sci U S A ; 114(47): E10112-E10121, 2017 11 21.
Artigo em Inglês | MEDLINE | ID: mdl-29114050

RESUMO

The Atg20 and Snx4/Atg24 proteins have been identified in a screen for mutants defective in a type of selective macroautophagy/autophagy. Both proteins are connected to the Atg1 kinase complex, which is involved in autophagy initiation, and bind phosphatidylinositol-3-phosphate. Atg20 and Snx4 contain putative BAR domains, suggesting a possible role in membrane deformation, but they have been relatively uncharacterized. Here we demonstrate that, in addition to its function in selective autophagy, Atg20 plays a critical role in the efficient induction of nonselective autophagy. Atg20 is a dynamic posttranslationally modified protein that engages both structurally stable (PX and BAR) and intrinsically disordered domains for its function. In addition to its PX and BAR domains, Atg20 uses a third membrane-binding module, a membrane-inducible amphipathic helix present in a previously undescribed location in Atg20 within the putative BAR domain. Taken together, these findings yield insights into the molecular mechanism of the autophagy machinery.


Assuntos
Proteínas Relacionadas à Autofagia/química , Autofagia/genética , Regulação Fúngica da Expressão Gênica , Proteínas de Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/genética , Nexinas de Classificação/química , Motivos de Aminoácidos , Proteínas Relacionadas à Autofagia/genética , Proteínas Relacionadas à Autofagia/metabolismo , Sítios de Ligação , Clonagem Molecular , Escherichia coli/genética , Escherichia coli/metabolismo , Expressão Gênica , Vetores Genéticos/química , Vetores Genéticos/metabolismo , Cinética , Modelos Moleculares , Ligação Proteica , Conformação Proteica em alfa-Hélice , Conformação Proteica em Folha beta , Domínios e Motivos de Interação entre Proteínas , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Transdução de Sinais , Nexinas de Classificação/genética , Nexinas de Classificação/metabolismo
16.
Proc Natl Acad Sci U S A ; 114(34): 9104-9109, 2017 08 22.
Artigo em Inglês | MEDLINE | ID: mdl-28784759

RESUMO

We have studied the interaction of the prototypical chaperonin GroEL with the prion domain of the Het-s protein using solution and solid-state NMR, electron and atomic force microscopies, and EPR. While GroEL accelerates Het-s protofibril formation by several orders of magnitude, the rate of appearance of fibrils is reduced. GroEL remains bound to Het-s throughout the aggregation process and densely decorates the fibrils at a regular spacing of ∼200 Å. GroEL binds to the Het-s fibrils via its apical domain located at the top of the large open ring. Thus, apo GroEL and bullet-shaped GroEL/GroES complexes in which only a single ring is capped by GroES interact with the Het-s fibrils; no evidence is seen for any interaction with football-shaped GroEL/GroES complexes in which both rings are capped by GroES. EPR spectroscopy shows that rotational motion of a nitroxide spin label, placed at the N-terminal end of the first ß-strand of Het-s fibrils, is significantly reduced in both Het-s/GroEL aggregates and Het-s fibrils, but virtually completely eliminated in Het-s/GroEL fibrils, suggesting that in the latter, GroEL may come into close proximity to the nitroxide label. Solid-state NMR measurements indicate that GroEL binds to the mobile regions of the Het-s fibril comprising the N-terminal tail and a loop connecting ß-strands 4 and 5, consistent with interactions involving GroEL binding consensus sequences located therein.


Assuntos
Amiloide/química , Chaperonina 60/química , Proteínas Fúngicas/química , Proteínas Priônicas/química , Sequência de Aminoácidos , Amiloide/metabolismo , Amiloide/ultraestrutura , Chaperonina 10/química , Chaperonina 10/genética , Chaperonina 10/metabolismo , Chaperonina 60/genética , Chaperonina 60/metabolismo , Espectroscopia de Ressonância de Spin Eletrônica , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Espectroscopia de Ressonância Magnética , Microscopia de Força Atômica , Microscopia Eletrônica , Modelos Moleculares , Mutação , Proteínas Priônicas/genética , Proteínas Priônicas/metabolismo , Ligação Proteica , Conformação Proteica
17.
ACS Infect Dis ; 2(11): 882-891, 2016 11 11.
Artigo em Inglês | MEDLINE | ID: mdl-27669574

RESUMO

Carbohydrate binding proteins such as griffithsin, cyanovirin-N, and BanLec are potent HIV entry inhibitors and promising microbicides. Each binds to high-mannose glycans on the surface envelope glycoprotein gp120, yet the mechanisms by which they engage viral spikes and exhibit inhibition constants ranging from nanomolar to picomolar are not understood. To determine the structural and mechanistic basis for recognition and potency, we selected a panel of lectins possessing different valencies per subunit, oligomeric states, and relative orientations of carbohydrate binding sites to systematically probe their contributions to inhibiting viral entry. Cryo-electron micrographs and immuno gold staining of lectin-treated viral particles revealed two distinct effects-namely, viral aggregation or clustering of the HIV-1 envelope on the viral membrane-that were dictated by carbohydrate binding site geometry and valency. "Sandwich" surface plasmon resonance experiments revealed that a second binding event occurs only for those lectins that could aggregate viral particles. Furthermore, picomolar Kd values were observed for the second binding event, providing a mechanism by which picomolar IC50 values are achieved. We suggest that these binding and aggregation phenomena translate to neutralization potency.


Assuntos
Proteína gp120 do Envelope de HIV/metabolismo , Infecções por HIV/virologia , HIV-1/metabolismo , Lectinas/metabolismo , Sítios de Ligação , Proteína gp120 do Envelope de HIV/química , Proteína gp120 do Envelope de HIV/genética , Infecções por HIV/metabolismo , HIV-1/química , HIV-1/efeitos dos fármacos , HIV-1/genética , Humanos , Cinética , Lectinas/química , Lectinas/farmacologia , Ligação Proteica , Vírion/química , Vírion/genética , Vírion/metabolismo
18.
EMBO J ; 35(21): 2270-2284, 2016 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-27670760

RESUMO

The large GTPase dynamin is the first protein shown to catalyze membrane fission. Dynamin and its related proteins are essential to many cell functions, from endocytosis to organelle division and fusion, and it plays a critical role in many physiological functions such as synaptic transmission and muscle contraction. Research of the past three decades has focused on understanding how dynamin works. In this review, we present the basis for an emerging consensus on how dynamin functions. Three properties of dynamin are strongly supported by experimental data: first, dynamin oligomerizes into a helical polymer; second, dynamin oligomer constricts in the presence of GTP; and third, dynamin catalyzes membrane fission upon GTP hydrolysis. We present the two current models for fission, essentially diverging in how GTP energy is spent. We further discuss how future research might solve the remaining open questions presently under discussion.


Assuntos
Membrana Celular/fisiologia , Dinaminas/fisiologia , Animais , Guanosina Trifosfato/fisiologia , Humanos
19.
Cell Rep ; 14(9): 2084-2091, 2016 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-26923595

RESUMO

Poxviruses are enveloped DNA viruses that replicate within the cytoplasm. The first viral structures are crescents and spherical particles, with a lipoprotein membrane bilayer, that are thought to be derived from the ER. We determined that A17, a conserved viral transmembrane protein essential for crescent formation, forms homo-oligomers and shares topological features with cellular reticulon-like proteins. The latter cell proteins promote membrane curvature and contribute to the tubular structure of the ER. When the purified A17 protein was incorporated into liposomes, 25 nm diameter vesicles and tubules formed at low and high A17 concentrations, respectively. In addition, intracellular expression of A17 in the absence of other viral structural proteins transformed the ER into aggregated three-dimensional (3D) tubular networks. We suggest that A17 is a viral reticulon-like protein that contributes to curvature during biogenesis of the poxvirus membrane.


Assuntos
Estruturas da Membrana Celular/ultraestrutura , Poxviridae/genética , Proteínas Virais/fisiologia , Sequência de Aminoácidos , Animais , Linhagem Celular , Estruturas da Membrana Celular/virologia , Chlorocebus aethiops , Sequência Conservada , Retículo Endoplasmático/ultraestrutura , Retículo Endoplasmático/virologia , Proteínas Virais/química
20.
BMC Neurol ; 15: 223, 2015 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-26517984

RESUMO

BACKGROUND: Hereditary Spastic Paraplegia (HSP) represents a large group of clinically and genetically heterogeneous disorders linked to over 70 different loci and more than 60 recognized disease-causing genes. A heightened vulnerability to disruption of various cellular processes inherent to the unique function and morphology of corticospinal neurons may account, at least in part, for the genetic heterogeneity. METHODS: Whole exome sequencing was utilized to identify candidate genetic variants in a four-generation Siberian kindred that includes nine individuals showing clinical features of HSP. Segregation of candidate variants within the family yielded a disease-associated mutation. Functional as well as in-silico structural analyses confirmed the selected candidate variant to be causative. RESULTS: Nine known patients had young-adult onset of bilateral slowly progressive lower-limb spasticity, weakness and hyperreflexia progressing over two-to-three decades to wheel-chair dependency. In the advanced stage of the disease, some patients also had distal wasting of lower leg muscles, pes cavus, mildly decreased vibratory sense in the ankles, and urinary urgency along with electrophysiological evidence of a mild distal motor/sensory axonopathy. Molecular analyses uncovered a missense c.2155C > T, p.R719W mutation in the highly conserved GTP-effector domain of dynamin 2. The mutant DNM2 co-segregated with HSP and affected endocytosis when expressed in HeLa cells. In-silico modeling indicated that this HSP-associated dynamin 2 mutation is located in a highly conserved bundle-signaling element of the protein while dynamin 2 mutations associated with other disorders are located in the stalk and PH domains; p.R719W potentially disrupts dynamin 2 assembly. CONCLUSION: This is the first report linking a mutation in dynamin 2 to a HSP phenotype. Dynamin 2 mutations have previously been associated with other phenotypes including two forms of Charcot-Marie-Tooth neuropathy and centronuclear myopathy. These strikingly different pathogenic effects may depend on structural relationships the mutations disrupt. Awareness of this distinct association between HSP and c.2155C > T, p.R719W mutation will facilitate ascertainment of additional DNM2 HSP families and will direct future research toward better understanding of cell biological processes involved in these partly overlapping clinical syndromes.


Assuntos
Dinaminas/genética , Exoma , GTP Fosfo-Hidrolases/genética , Paraplegia Espástica Hereditária/genética , Adulto , Análise Mutacional de DNA , Dinamina II , Saúde da Família , Feminino , GTP Fosfo-Hidrolases/química , Variação Genética , Células HeLa , Humanos , Masculino , Pessoa de Meia-Idade , Mutação , Mutação de Sentido Incorreto , Fenótipo , Sibéria
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...