Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Mol Ecol Resour ; 8(6): 1230-8, 2008 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-21586010

RESUMO

We describe a convenient, cost-effective and flexible medium-throughput single nucleotide polymorphism (SNP) genotyping method, Multiplex SNP-SCALE, which enables the simultaneous amplification by polymerase chain reaction (PCR) of up to 25 (or potentially more) loci followed by electrophoresis in an automated DNA sequencer. We extended the original SNP-SCALE method to include (i) use of a commercial multiplex PCR kit, (ii) a four-dye system, (iii) much-reduced (2-µL) reaction volumes, (iv) drying down of template DNA before PCR, (v) use of pig-tailed primers, (vi) a PCR product weighting system, (vii) a standard optimized touchdown PCR thermocycling programme, and (viii) software (SNP-SCALE Primer Designer) that automatically designs suitable SNP-SCALE primers for a batch of loci. This new protocol was validated for different types of SNPs. The method is cost- and time-effective for medium-scale evolutionary and ecological projects involving 10s to 100s of loci.

2.
Mol Ecol ; 10(8): 2069-78, 2001 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-11555250

RESUMO

Sympatric individuals of Rattus fuscipes and Rattus leucopus, two Australian native rats from the tropical wet forests of north Queensland, are difficult to distinguish morphologically and are often confused in the field. When we started a study on fine-scale movements of these species, using microsatellite markers, we found that the species as identified in the field did not form coherent genetic groups. In this study, we examined the potential of an iterative process of genetic assignment to separate specimens from distinct (e.g. species, populations) natural groups. Five loci with extensive overlap in allele distributions between species were used for the iterative process. Samples were randomly distributed into two starting groups of equal size and then subjected to the test. At each iteration, misassigned samples switched groups, and the output groups from a given round of assignment formed the input groups for the next round. All samples were assigned correctly on the 10th iteration, in which two genetic groups were clearly separated. Mitochondrial DNA sequences were obtained from samples from each genetic group identified by assignment, together with those of museum voucher specimens, to assess which species corresponded to which genetic group. The iterative procedure was also used to resolve groups within species, adequately separating the genetically identified R. leucopus from our two sampling sites. These results show that the iterative assignment process can correctly differentiate samples into their appropriate natural groups when diagnostic genetic markers are not available, which allowed us to resolve accurately the two R. leucopus and R. fuscipes species. Our approach provides an analytical tool that may be applicable to a broad variety of situations where genetic groups need to be resolved.


Assuntos
Repetições de Microssatélites , Muridae/classificação , Alelos , Animais , DNA Mitocondrial/genética , Marcadores Genéticos , Muridae/genética , Filogenia , Queensland , Ratos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA