Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Tipo de estudo
Intervalo de ano de publicação
1.
Sci Rep ; 13(1): 11228, 2023 07 11.
Artigo em Inglês | MEDLINE | ID: mdl-37433843

RESUMO

Physical activity is essential in weight management, improves overall health, and mitigates obesity-related risk markers. Besides inducing changes in systemic metabolism, habitual exercise may improve gut's microbial diversity and increase the abundance of beneficial taxa in a correlated fashion. Since there is a lack of integrative omics studies on exercise and overweight populations, we studied the metabolomes and gut microbiota associated with programmed exercise in obese individuals. We measured the serum and fecal metabolites of 17 adult women with overweight during a 6-week endurance exercise program. Further, we integrated the exercise-responsive metabolites with variations in the gut microbiome and cardiorespiratory parameters. We found clear correlation with several serum and fecal metabolites, and metabolic pathways, during the exercise period in comparison to the control period, indicating increased lipid oxidation and oxidative stress. Especially, exercise caused co-occurring increase in levels of serum lyso-phosphatidylcholine moieties and fecal glycerophosphocholine. This signature was associated with several microbial metagenome pathways and the abundance of Akkermansia. The study demonstrates that, in the absence of body composition changes, aerobic exercise can induce metabolic shifts that provide substrates for beneficial gut microbiota in overweight individuals.


Assuntos
Microbioma Gastrointestinal , Sobrepeso , Adulto , Humanos , Feminino , Sobrepeso/terapia , Multiômica , Exercício Físico , Obesidade/terapia , Lecitinas
2.
Metabolites ; 12(4)2022 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-35448522

RESUMO

Exercise has been shown to affect gut the microbiome and metabolic health, with athletes typically displaying a higher microbial diversity. However, research on the gut microbiota and systemic metabolism in elite athletes remains scarce. In this study, we compared the gut microbiota profiles and serum metabolome of national team cross-country skiers at the end of an exhausting training and competitive season to those of normally physically-active controls. The gut microbiota were analyzed using 16S rRNA amplicon sequencing. Serum metabolites were analyzed using nuclear magnetic resonance. Phylogenetic diversity and the abundance of several mucin-degrading gut microbial taxa, including Akkermansia, were lower in the athletes. The athletes had a healthier serum lipid profile than the controls, which was only partly explained by body mass index. Butyricicoccus associated positively with HDL cholesterol, HDL2 cholesterol and HDL particle size. The Ruminococcus torques group was less abundant in the athlete group and positively associated with total cholesterol and VLDL and LDL particles. We found the healthier lipid profile of elite athletes to co-occur with known health-beneficial gut microbes. Further studies should elucidate these links and whether athletes are prone to mucin depletion related microbial changes during the competitive season.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA