Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Environ Pollut ; 330: 121767, 2023 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-37146869

RESUMO

Contaminants in human-dominated landscapes are changing ecological interactions. The global increase in freshwater salinity is likely to change predator-prey interactions due to the potential interactive effects between predatory stress and salt stress. We conducted two experiments to assess the interactions between the non-consumptive effects of predation and elevated salinity on the abundance and vertical movement rate of a common lake zooplankton species (Daphnia mendotae). Our results revealed an antagonism rather than a synergism between predatory stress and salinity on zooplankton abundance. Elevated salinity and predator cues triggered a >50% reduction in abundance at salt concentrations of 230 and 860 mg Cl-/L, two thresholds designed to protect freshwater organisms from chronic and acute effects due to salt pollution. We found a masking effect between salinity and predation on vertical movement rate of zooplankton. Elevated salinity reduced zooplankton vertical movement rate by 22-47%. A longer exposure history only magnified the reduction in vertical movement rate when compared to naïve individuals (no prior salinity exposure). Downward movement rate under the influence of predatory stress in elevated salinity was similar to the control, which may enhance the energetic costs of predator avoidance in salinized ecosystems. Our results suggest antagonistic and masking effects between elevated salinity and predatory stress will have consequences for fish-zooplankton interactions in salinized lakes. Elevated salinity could impose additional energetic constraints on zooplankton predator avoidance behaviors and vertical migration, which may reduce zooplankton population size and community interactions supporting the functioning of lake ecosystems.


Assuntos
Daphnia , Ecossistema , Humanos , Animais , Comportamento Predatório , Lagos , Peixes , Zooplâncton
2.
Sci Rep ; 13(1): 2975, 2023 02 20.
Artigo em Inglês | MEDLINE | ID: mdl-36806739

RESUMO

Rising salinity from road deicing salts threatens the survival and reproduction of freshwater organisms. We conducted two experiments to address how Daphnia pulex survival and reproduction were affected by road salt concentration (control, 120, 640 and 1200 mg Cl-/L) crossed with three concentrations of water hardness (20, 97, 185 mg CaCO3 /L). D. pulex survival was poor in our hard water treatment in both experiments (185 mg CaCO3 /L), potentially indicating a low tolerance to hard water for the strain used in our experiments. With the remaining two hardness treatments (20 and 97 mg CaCO3 /L), we found no evidence of an interactive effect between salt concentration and water hardness on D. pulex survival. In our population-level experiment, D. pulex survival was reduced by > 60% at 120 mg Cl-/L compared to the control. In the individual experiment, survival was similar between the control and 120 mg Cl-/L, but ≤ 40% of individuals survived in 640 and 1200 mg Cl-/L. For the surviving individuals across all treatments, the number of offspring produced per individual declined with increasing Cl- concentration and in hard water. Our results indicate that current Cl- thresholds may not protect some zooplankton and reduced food availability per capita may enhance the negative impacts of road salt.


Assuntos
Poluentes Químicos da Água , Zooplâncton , Animais , Dureza , Poluentes Químicos da Água/análise , Cloreto de Sódio , Cloreto de Sódio na Dieta , Reprodução , Daphnia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...