Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Opt Express ; 24(2): A397-407, 2016 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-26832591

RESUMO

A test method that measures spectrally resolved irradiance distribution for a concentrator photovoltaic (CPV) optical system is presented. In conjunction with electrical I-V curves, it is a means to visualize and characterize the effects of chromatic aberration and nonuniform flux profiles under controllable testing conditions. The indoor characterization test bench, METHOD (Measurement of Electrical, Thermal and Optical Devices), decouples the temperatures of the primary optical element (POE) and the cell allowing their respective effects on optical and electrical performance to be analysed. In varying the temperature of the POE, the effects on electrical efficiency, focal distance, spectral sensitivity, acceptance angle and multi-junction current matching profiles can be quantified. This work presents the calibration procedures to accurately image the spectral irradiance distribution of a CPV system and a study of system behavior over lens temperature.

2.
Nanotechnology ; 21(13): 134015, 2010 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-20208116

RESUMO

Lithographic fabrication may be used to define laterally coupled gratings of high refractive index contrast on waveguide ridges, eliminating the need for regrowth steps in such distributed feedback lasers. These may be made more amenable to fabrication by employing higher-order gratings. Reliable exploration of the laser design space requires that the radiating partial waves be accurately incorporated in numerical simulations. We modify the coupled-mode approach to fully consider the two-dimensional cross section, analyzing rectangular, sinusoidal, triangular and trapezoidal grating shapes. Effective coupling coefficients are determined for grating orders from first to third. We show that, by tailoring the grating microstructure, effective coupling coefficients up to double that of a 0.5 duty cycle rectangular grating can be achieved. The actual grating microstructure of an as-fabricated grating was analyzed and its effective coupling coefficient predicted as [Formula: see text]. This was found to be in excellent agreement with the value extracted from the amplified spontaneous emission spectrum, [Formula: see text].

3.
Science ; 291(5503): 451-3, 2001 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-11161192

RESUMO

We demonstrate coupling and entangling of quantum states in a pair of vertically aligned, self-assembled quantum dots by studying the emission of an interacting electron-hole pair (exciton) in a single dot molecule as a function of the separation between the dots. An interaction-induced energy splitting of the exciton is observed that exceeds 30 millielectron volts for a dot layer separation of 4 nanometers. The results are interpreted by mapping the tunneling of a particle in a double dot to the problem of a single spin. The electron-hole complex is shown to be equivalent to entangled states of two interacting spins.

4.
Science ; 274(5291): 1350-3, 1996 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-8910269

RESUMO

Visible-stimulated emission in a semiconductor quantum dot (QD) laser structure has been demonstrated. Red-emitting, self-assembled QDs of highly strained InAlAs have been grown by molecular beam epitaxy on a GaAs substrate. Carriers injected electrically from the doped regions of a separate confinement heterostructure thermalized efficiently into the zero-dimensional QD states, and stimulated emission at approximately 707 nanometers was observed at 77 kelvin with a threshold current of 175 milliamperes for a 60-micrometer by 400-micrometer broad area laser. An external efficiency of approximately 8.5 percent at low temperature and a peak power greater than 200 milliwatts demonstrate the good size distribution and high gain in these high-quality QDs.

5.
Neural Comput ; 8(2): 215-55, 1996 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-8581883

RESUMO

Mammalian cold thermoreceptors encode steady-state temperatures into characteristic temporal patterns of action potentials. We propose a mechanism for the encoding process. It is based on Plant's ionic model of slow wave bursting, to which stochastic forcing is added. The model reproduces firing patterns from cat lingual cold receptors as the parameters most likely to underlie the thermosensitivity of these receptors varied over a 25 degrees C range. The sequence of firing patterns goes from regular bursting, to simple periodic, to stochastically phase-locked firing or "skipping." The skipping at higher temperatures is shown to necessitate an interaction between noise and a subthreshold endogenous oscillation in the receptor. The basic period of all patterns is robust to noise. Further, noise extends the range of encodable stimuli. An increase in firing irregularity with temperature also results from the loss of stability accompanying the approach by the slow dynamics of a reverse Hopf bifurcation. The results are not dependent on the precise details of the Plant model, but are generic features of models where an autonomous slow wave arises through a Hopf bifurcation. The model also addresses the variability of the firing patterns across fibers. An alternate model of slow-wave bursting (Chay and Fan 1993) in which skipping can occur without noise is also analyzed here in the context of cold thermoreception. Our study quantifies the possible origins and relative contribution of deterministic and stochastic dynamics to the coding scheme. Implications of our findings for sensory coding are discussed.


Assuntos
Potenciais de Ação/fisiologia , Ruído , Limiar Sensorial/fisiologia , Termorreceptores/fisiologia , Animais , Gatos , Temperatura Baixa , Nervo Lingual/fisiologia , Modelos Neurológicos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...