Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Biosci (Landmark Ed) ; 26(11): 1031-1051, 2021 11 30.
Artigo em Inglês | MEDLINE | ID: mdl-34856751

RESUMO

Background: Parkinson's disease (PD) is associated with progressive neuronal damage and dysfunction. Oxidative stress helps to regulate neurodegenerative and neuronal dysfunction. Natural compounds could attenuate oxidative stress in a variety of neurological disorders. B. juncea is a rich source of antioxidants. The present study aimed to evaluate the therapeutic potential of B. juncea leaves for the treatment of PD by applying behavioral, in vivo and in silico studies. For in vivo studies rats were divided into six groups (n = 6). Group-I served as normal control (vehicle control). Group-II was disease control (haloperidol 1 mg/kg). Group-III was kept as a standard group (L-Dopa 100 mg/kg + carbidopa 25 mg/kg). Groups (IV-VI) were the treatment groups, receiving extract at 200-, 400- and 600 mg/kg doses respectively, for 21 days orally. Results: In vivo study results showed that the extract was found to improve muscles strength, motor coordination, and balance in PD. These behavioral outcomes were consistent with the recovery of endogenous antioxidant defence in biochemical analysis which was further corroborated with histopathological ameliorations. Dopamine levels increased and monoamine oxidase B (MAO-B) levels decreased dose-dependently in the brain during the study. Herein, we performed molecular docking analysis of the proposed extracted phytochemicals has explained that four putative phytochemicals (sinapic acid, rutin, ferulic acid, and caffeic acid) have presented very good results in terms of protein-ligand binding interactions as well as absorption, distribution, metabolism, excretion & toxicity (ADMET) profile estimations. Conclusion: The undertaken study concluded the anti-Parkinson activity of B. juncea and further suggests developments on its isolated compounds in PD therapeutics.


Assuntos
Levodopa , Mostardeira , Animais , Simulação de Acoplamento Molecular , Compostos Fitoquímicos/farmacologia , Extratos Vegetais/farmacologia , Ratos
2.
Life Sci ; 285: 119994, 2021 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-34592236

RESUMO

AIM OF THE STUDY: Breast cancer is caused by abnormal growth of the cells and progressed due to the over-expression of estrogen (ER) and progesterone (PR). The current study was designed to evaluate the anti-tumor activity of 2,4,6 tris-methyphenylamino1,3,5-triazine compound (MPAT) in N-nitroso, N-methyl urea (NMU)-induced mammary gland cancer. METHODS: Molecular docking and in-vitro studies were conducted before the in-vivo analysis. Female Albino rats were divided into 5 groups (n = 6). Group I received Carboxymethylcellulose (CMC) (1 mL/100 g). Group II (diseased group) received NMU 50 mg/kg. Group III (standard group) received tamoxifen (5 mg/kg). Group IV-V received MPAT at doses of 30 and 60 mg/kg respectively. All groups received NMU intraperitoneally except the control group at 3 weeks intervals for 12 weeks. After 12 weeks of NMU dosing, MPAT was given for 15 consecutive days. Biochemical, oxidative stress markers, hormonal profile, and inflammatory mediators were analyzed. KEY FINDINGS: MPAT showed significant interaction with the selected targets in docking studies. An over-expression of ER and PR was observed in NMU-treated rats which were restored significantly after MPAT administration. Nitrite and MDA levels were high in the diseased group and MPAT treatment attenuated the oxidative damage after treatment. Antioxidants such as superoxide dismutase (SOD), Catalase (CAT), total sulfhydryl (TSH), glutathione (GSH), and Lactate dehydrogenase (LDH) values were low in NMU-treated rats. SIGNIFICANCE: This study concluded that MPAT can be used as an anticancer agent due to its significant effects on down-regulating the hormonal profile and oxidative stress markers.


Assuntos
Antineoplásicos/farmacologia , Neoplasias da Mama/tratamento farmacológico , Estrogênios/metabolismo , Mediadores da Inflamação/antagonistas & inibidores , Progesterona/metabolismo , Triazinas/farmacologia , Animais , Antineoplásicos/química , Neoplasias da Mama/metabolismo , Regulação para Baixo , Feminino , Humanos , Mediadores da Inflamação/metabolismo , Células MCF-7 , Estresse Oxidativo/efeitos dos fármacos , Oxirredutases/metabolismo , Progesterona/antagonistas & inibidores , Ratos , Tamoxifeno/farmacologia , Triazinas/química
3.
Front Pharmacol ; 12: 664832, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34149418

RESUMO

Purpose: Alzheimer disease (AD) is a progressive neurodegenerative disorder that is caused by neuroinflammation and oxidative stress. The present study aimed to characterize and then investigate the memory-enhancing potential of Viola odorata methanolic extract in lipopolysaccharide (LPS)-treated mice. Methods: V. odorata characterization was done by using the GCMS technique. Neuroinflammation was induced by the intracerebroventricular administration of LPS at a dose of 12 µg. Animals were divided randomly into six groups (n = 10). Group I was normal control, which was given vehicle. Group II was disease control, which received LPS (12 µg) via the intracerebroventricular route. Group III was standard, which was administered with donepezil (3 µg) orally for 21 days. Groups IV-VI were the treatment groups, which were administered with the extract at 100, 200, and 400 mg/kg dose levels orally respectively for 21 days. Groups III-VI received LPS (12 µg) on the first day along with their treatments. During the treatment, the animals were assessed for memory retention by employing different behavioral paradigms namely elevated plus maze, passive avoidance, foot shock and open field. Various mediators [endogenous antioxidants, neurotransmitters, and acetylcholinesterase (AChE)] involved in the pathogenesis of AD were quantified by using the UV spectrophotometric method. Results: Extract-treated groups showed a remarkable improvement in cognitive impairment in all behavioral paradigms. Oxidative stress biomarkers, that is, superoxide dismutase, catalase, and glutathione were raised dose-dependently in the treatment groups with a dose-dependent decrease in the malonaldehyde and AChE levels in the brains of the treated animals. The treatment groups showed decreased levels of inflammatory biomarkers, that is, tumor necrosis factor-alpha, nuclear factor kappa light-chain enhancer of activated ß-cells, and cyclo-oxygenase, which supports the therapeutic effectiveness of the treatment. Conclusion: Based on behavioral, oxidative stress biomarker, and neuroinflammatory data, it is concluded that V. odorata possesses memory-enhancing activity and may prove a beneficial role in the management of AD.

4.
Front Pharmacol ; 12: 686614, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34122114

RESUMO

Background and objectives: Breast cancer is a heterogeneous disease that poses the highest incidence of morbidity among women and presents many treatment challenges. In search of novel breast cancer therapies, several triazine derivatives have been developed for their potential chemotherapeutic activity. This study aims to evaluate the N-nitroso-N-methyl urea (NMU)-induced anti-mammary gland tumor activity of 2,4,6 (O-nitrophenyl amino) 1,3,5-triazine (O-NPAT). Methods: The in silico modeling and in vitro cytotoxicity assay were performed to strengthen the research hypothesis. For in vivo experimentation, 30 female rats were divided into five groups. Group I (normal control) received normal saline. Group II (disease control) received NMU (50 mg/kg). Group III (standard control) was treated with tamoxifen (5 mg/kg). Groups IV and V received O-NPAT at a dose level of 30 and 60 mg/kg, respectively. For tumor induction, 3 intraperitoneal doses of NMU were given at a 3-week interval, whereas all treatment compounds were administered orally for 14 consecutive days. Biochemical and oxidative stress markers were estimated for all experimental animals. DNA strand breakage alongside inflammatory markers was also measured for the analysis of inflammation. The hormonal profile of progesterone and estrogen was also estimated. Results: The test compound presented a significant reduction in organ weight and restored the hepatic and renal enzymes. O-NPAT treatments enhanced the antioxidant enzyme level of catalase (CAT), superoxide dismutase (SOD), and total sulfhydryl (TSH), with a highly significant reduction in lactate dehydrogenase (LDH) and lipid peroxidation. Also, the decrease in fragmented DNA, hormonal levels (estradiol and progesterone), and inflammatory cytokines (IL-6 and TNF-α) justified the dosage efficacy further supported by histopathological findings. Conclusion: All results indicated the anti-breast tumor activity of O-NPAT and presented its possibility of exploitation for beneficial effects in breast cancer treatment.

5.
ACS Omega ; 5(23): 13973-13983, 2020 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-32566864

RESUMO

Alzheimer's disease (AD) is the neurodegenerative disorder characterized by impairment of higher intellectual dysfunctions associated with changes in the cognitive, behavioral, and social activities. AIM OF THE STUDY: The current study was designed to evaluate the potential of aldosterone antagonist in the treatment of AD. METHODOLOGY: The study was conducted on albino mice of either sex (n = 60). Mice were subcategorized into six groups, each group having 10 mice. Group I-normal control (CMC 1 mL/kg), group II-diseased [streptozotocin (STZ), 3 mg/kg, intracerebroventricular (i.c.v.)], group III-standard (piracetam, 200 mg/kg, i.p.), and groups IV-VI designated as the treatment group (eplerinone at dose levels of 4, 8, and 16 mg/kg, orally), respectively. The study was carried out for 14 consecutive days. STZ was administered through the i.c.v. route on first and third days of the study for memory impairment. The molecular docking was performed to investigate the chemical behavior of compounds to inhibit the AChE. Anti-Alzheimer's effect was assessed by using the behavioral paradigms such as passive avoidance, elevated plus maze, Morris water maze, open field, and balance beam. Various endogenous antioxidants such as SOD, GSH, nitrite, MDA, CAT, and AChE were identified in brain tissues of treated mice to assess the oxidative stress index. Biochemical markers for AD such as norepinephrine, dopamine, and serotonin, Aß 1-40, Aß 1-42, NF-κB, and tumor necrosis factor alpha were analyzed in brain tissues of mice. Expression of beta amyloid was observed by PCR. RESULTS: The in silico study indicated the distinct mechanism of eplerinone to inhibit the AChE. The outcomes of the in vivo study manifested that eplerinone at the highest dose was found to be more effective in the treatment of AD. CONCLUSION: It may be concluded from the research work that eplerinone can be effective for cognitive improvement which proposes its therapeutic effect in many neurodegenerative disorders such as AD.

6.
Biomolecules ; 9(9)2019 09 02.
Artigo em Inglês | MEDLINE | ID: mdl-31480727

RESUMO

Alzheimer's disease (AD) is a neurodegenerative disease characterized by a cascade of changes in cognitive, behavioral, and social activities. Several areas of the brain are involved in the regulation of memory. Of most importance are the amygdala and hippocampus. Antioxidant therapy is used for the palliative treatment of different degenerative diseases like diabetes, cirrhosis, and Parkinson's, etc. The objective of this study was to assess the effectiveness of exogenous antioxidants, in particular, ß carotene (1.02 and 2.05 mg/kg) against intracerebroventricular injected streptozotocin-induced memory impairment in mice. Streptozotocin (3 mg/kg, i.c.v) was administered in two separate doses (on 1st and 3rd days of treatment) for neurodegeneration. Fifty Albino mice (male) were selected in the protocol, and they were classified into five groups (Group I-control, Group II-disease, Group III-standard, Group IV-V-ß-carotene-treated) to investigate the cognitive enhancement effect of selected antioxidants. The cognitive performance was observed following the elevated plus-maze, passive avoidance, and open field paradigms. Acetylcholine esterase, ß-amyloid protein, and biochemical markers of oxidative stress such as glutathione peroxidase, superoxide dismutase, and catalase were analyzed in brain homogenates. In silico activity against acetylcholinesterase (AChE) was determined by the molecular modeling of ß-carotene. ß-carotene at a dose of 2.05 mg/kg was found to attenuate the deleterious effects of streptozotocin-induced behavioral and biochemical impairments, including the inhibition of acetylcholinesterase activity. The in silico studies confirmed the binding capacity of ß-carotene with the acetylcholinesterase enzyme. The administration of ß-carotene attenuated streptozotocin-induced cognitive deficit via its anti-oxidative effects, inhibition of acetylcholinesterase, and the reduction of amyloid ß-protein fragments. These results suggest that ß-carotene could be useful for the treatment of neurodegenerative diseases such as Alzheimer's disease.


Assuntos
Doença de Alzheimer/tratamento farmacológico , Antioxidantes/farmacologia , Inibidores da Colinesterase/farmacologia , Disfunção Cognitiva/tratamento farmacológico , Fármacos Neuroprotetores/farmacologia , beta Caroteno/farmacologia , Acetilcolinesterase/metabolismo , Doença de Alzheimer/induzido quimicamente , Doença de Alzheimer/metabolismo , Animais , Antioxidantes/administração & dosagem , Inibidores da Colinesterase/administração & dosagem , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Masculino , Camundongos , Modelos Moleculares , Fármacos Neuroprotetores/administração & dosagem , Estresse Oxidativo/efeitos dos fármacos , Estreptozocina/administração & dosagem , Estreptozocina/antagonistas & inibidores , beta Caroteno/administração & dosagem
7.
Medicina (Kaunas) ; 55(5)2019 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-31117312

RESUMO

Background and Objectives: Alzheimer's disease (AD) is a neurodegenerative disorder that deteriorates daily life due to loss of memory and cognitive impairment. It is believed that oxidative stress and cholinergic deficit are the leading causes of AD. Disease-modifying therapies for the treatment of AD are a challenging task for this century. The search for natural and synthetic agents has attracted the attention of researchers. The objective of this study was a scientific approach to search for most suitable remedy for AD by exploiting the potential of Albizia lebbeck (L.) seeds. Materials and Methods: Hydromethanolic extract of Albizia lebbeck seeds (ALE) was prepared by maceration. The plant was characterized by physico-chemical, phyto-chemical, and high-performance liquid chromatography (HPLC). Thirty-six Wistar albino rats were used in this study and divided into six groups (n = 6). Group I: normal control; Group II: disease control (AlCl3; 100 mg/Kg); Group III: standard control (galantamine; 0.5mg/Kg); Groups IV-VI were treated ALE at 100, 200 and 300 mg/Kg dose levels, respectively. All the treatments were given orally for 21 consecutive days. Y-maze, T-maze, Morris water maze, hole board, and open field behavioral tests were performed to analyze the cognitive impairment. Biochemical, histological, and computational studies were performed to support the results of behavioral tests. Results: HPLC analysis indicated the presence of quercetin, gallic acid, m-coumaric acid, and sinapic acid. ALE significantly improved the memory and cognitive impairments. Endogenous antioxidant stress biomarker levels and histopathological outcomes supported the therapeutic potential of A. lebbeck in AD. Cholinergic deficits were also ameliorated by ALE co-administration, possibly by the inhibition of hyperactive acetylcholinesterase (AChE). Docking studies supported the potential of ALE against AD. Conclusions: The data suggested that ALE has neuroprotective potential that can be exploited for beneficial effects to treat AD.


Assuntos
Albizzia/classificação , Doença de Alzheimer/tratamento farmacológico , Cognição/efeitos dos fármacos , Animais , Modelos Animais de Doenças , Aprendizagem em Labirinto , Extratos Vegetais/farmacocinética , Extratos Vegetais/uso terapêutico , Fatores de Proteção , Ratos , Usos Terapêuticos
8.
Medicina (Kaunas) ; 55(5)2019 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-31121979

RESUMO

Background and Objective: Medicinal plants represent an important source of alternative medicine for the management of various diseases. The present study was undertaken to assess the potential of Lawsonia inermis ethanol (Li.Et) and chloroform (Li.Chf) extracts as memory-enhancing agents in experimental animals. Materials and Methods: Li.Et and Li.Chf were phytochemically characterized via gas chromatography-mass spectroscopy (GC-MS). Samples were tested for nootropic potentials at doses of 25, 50, 100, 200 mg/kg (per oral in experimental animals (p.o.)). Swiss albino mice of either sex (n = 210) were divided into 21 × 10 groups for each animal model. Memory-enhancing potentials of the samples were assessed using two methods including "without inducing amnesia" and "induction of amnesia" by administration of diazepam (1 mg/kg, intraperitoneally. Piracetam at 400 mg/kg (i.p.) was used as positive control. Cognitive behavioral models including elevated plus maze (EPM) and the passive shock avoidance (PSA) paradigm were used. Biochemical markers of oxidative stress such as glutathione (GSH), catalase (CAT), superoxide dismutase (SOD) levels were analyzed in the brain tissue of treated mice. Results: In 2,2-diphenyl-1-picrylhydrazyl (DPPH) free radicals scavenging assay, Li.Et and Li.Chf exhibited 70.98 ± 1.56 and 66.99 ± 1.76% inhibitions respectively at 1.28 mg/mL concentration. GCMS results revealed the presence of important phytochemicals. Both samples (Li.Et and Li.Chf) at 25 mg/kg (p.o.) dose significantly (p < 0.05) improved learning and memory as indicated by decline in transfer latency and increase in step down latency in EPM and PSA models respectively. Li.Et and Li.Chf at 25 mg/kg (p.o.) showed considerable increase in GSH (2.75 ± 0.018 ***), SOD (2.61 ± 0.059 ***) and CAT (2.71 ± 0.049 ***) levels as compared to positive and negative control groups. Conclusions: This study provides the preliminary clue that L. inermis may be a potential source of memory-enhancing and anti-oxidant compounds and thus warrant further studies.


Assuntos
Cognição/efeitos dos fármacos , Lawsonia (Planta) , Nootrópicos/farmacologia , Estresse Oxidativo/efeitos dos fármacos , Animais , Biomarcadores/análise , Encéfalo/efeitos dos fármacos , Encéfalo/fisiopatologia , Clorofórmio/uso terapêutico , Modelos Animais de Doenças , Cromatografia Gasosa-Espectrometria de Massas/métodos , Humanos , Camundongos , Nootrópicos/uso terapêutico , Extratos Vegetais/uso terapêutico
9.
Front Pharmacol ; 8: 945, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29379435

RESUMO

Aggression is a major hallmark worldwide attributing negative traits in personality. Wide variety of antioxidants is used for the treatment of many ailments. The present study was conducted to evaluate the role of antioxidants such as ascorbic acid (15.42 and 30.84 mg/kg), beta carotene (1.02 and 2.05 mg/kg), vitamin E (2.5 and 5.0 mg/kg), and N-acetyl cysteine (102.85 and 205.70 mg/kg) in the treatment of aggression. Two aggression models (isolation induced aggression model and L-DOPA induced aggression model) were used in the study. Male albino mice (n = 330) were used in the study which were further subdivided into 11 groups (Group I-control, group II-diseased, group III-standard group, group IV-V treated with ascorbic, group VI-VII treated with beta carotene, group VIII-IX treated with vitamin E, group X-XI treated with N-acetyl cysteine for 14 consecutive days). Different biochemical markers (glutathione, superoxide dismutase, and catalase) were determined to evaluate the antioxidant potential in oxidative stress. High dose of vitamin E (5.0 mg/kg) was more effective to reduce the aggression in isolated animals while all other antioxidants produced dose-dependent anti-aggressive effect except N-acetyl cysteine which had marked anti-aggressive effect at low dose (102.75 mg/kg). Low doses of vitamin E (2.5 mg/kg) and N-acetyl cysteine (102.75 mg/kg) and high dose of beta carotene (2.05 mg/kg) were effective to prevent all aggression parameters in acute anti-aggressive activity against L-DOPA induced aggression. However, all test antioxidants were equally effective in chronic anti-aggressive studies against L-DOPA induced aggression. It may be concluded that selected antioxidants can reverse the aggression which is a key symptom of many neurological disorder.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...