Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Plant Sci ; 12: 748531, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34899776

RESUMO

To maximize crop growth, crops need to capture sunlight efficiently. This property is primarily influenced by the shape of the crops such as the angle, area, and arrangement of leaves. We constructed a rice (Oryza sativa L.) inbred line that displayed an ideal transition of plant shapes in terms of sunlight receiving efficiency. During vegetative growth, this line exhibited tiller spreading with increased tiller number, which formed a parabolic antenna-like structure. The architecture probably improved light reception efficiency of individuals compared with the recurrent parent. The line achieved not only acceleration of the vegetative growth, but also significant suppression of weed growth under the canopy. The increased light reception efficiency of the line has consequently reduced the amount of incident light to the ground and supplied significant competitiveness against weeds. The spread tillers became erect from the entry of the reproductive growth phase, adaptively sustaining light reception efficiency in thicker stands. The line carries a small chromosomal segment from Oryza rufipogon Griff., a putative progenitor of Asian cultivated rice. The introduced chromosome segment had little effect on grain yield and quality. Our results shed light on potentials hidden in the wild rice chromosome segment to achieve the valuable traits.

2.
AoB Plants ; 13(4): plab040, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34316338

RESUMO

Flower opening time (FOT) is affected by genetic and environmental factors, but little is known about the effect of light and dark conditions on FOT in cereal crops. FOT of an indica rice cultivar, IR64, and its near-isogenic line carrying a QTL for an early-morning flowering trait (IR64+qEMF3) were investigated in a natural-light and temperature-controlled small greenhouse by exposing either the panicle or stem or both plant organs to different light and dark conditions. FOT did not change in either genotype when panicles were exposed to light. A large difference in FOT was found between genotypes when panicles were exposed to dark conditions; no flower opening was observed in IR64, whereas flower opening was delayed but observed in IR64+qEMF3. These results suggest that the panicle is the organ that perceives light for flower opening in both genotypes, whereas the light requirement to reach flower opening was quite different between genotypes. Flower opening of IR64 occurred concomitantly with elongation of anther filament in the light after the dark treatment stopped, whereas approximately half of flowering of IR64+qEMF3 resulted in apparent cleistogamy even during dark treatment. An extended duration of the dark treatment until 1730H (30-50 min before sunset) made FOT of IR64 spikelets on the next day shifted to a time as early as that of IR64+qEMF3, with significant advancement of FOT compared to the control IR64 spikelets. Our results indicated that different flowering responses to light and dark conditions exist between IR64 and IR64+qEMF3. These findings provide clues for understanding the unique genetic controls of flowering in an EMF line in rice. This study also showed evidence that artificial light environments can shift the FOT of IR64 to that of IR64+qEMF3.

3.
Breed Sci ; 70(5): 567-575, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33603553

RESUMO

To find new QTLs responsible for kernel cracking resistance, we screened 50 CSSLs derived from the moderately resistant cultivar 'Itadaki' (O. sativa L.) and the donor O. rufipogon. Two lines, IRSL 30 and IRSL 37, were selected as resistant. QTL analyses of the percentage of cracked kernels (PCK) in F4 individuals derived from "Itadaki/IRSL 30" and "Itadaki/IRSL 37" identified a major QTL, qCR (Cracking Resistance) 8-2, at the same position on chromosome 8 in both populations. 'IRSL 30' and 'IRSL 37' had a reduced PCK. These results show that qCR8-2 is likely to be an important QTL for kernel cracking resistance. Both lines had long awns, linked to qCR8-2, but the awnless line 'Chukei 19301' was also derived from "Itadaki/IRSL 37", so qCR8-2 is distinct from the gene for awn development. We consider that qCR8-2 will help in the breeding of new rice cultivars with high cracking resistance and in elucidating the physiological mechanism of kernel cracking.

4.
Genetics ; 201(2): 795-808, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26275424

RESUMO

We investigated the natural variations in the flag leaf morphology of rice. We conducted a principal component analysis based on nine flag leaf morphology traits using 103 accessions from the National Institute of Agrobiological Sciences Core Collection. The first component explained 39% of total variance, and the variable with highest loading was the width of the flag leaf (WFL). A genome-wide association analysis of 102 diverse Japanese accessions revealed that marker RM6992 on chromosome 4 was highly associated with WFL. In analyses of progenies derived from a cross between Takanari and Akenohoshi, the most significant quantitative trait locus (QTL) for WFL was in a 10.3-kb region containing the NARROW LEAF 1 (NAL1) gene, located 0.4 Mb downstream of RM6992. Analyses of chromosomal segment substitution lines indicated that a mutation (G1509A single-nucleotide mutation, causing an R233H amino acid substitution in NAL1) was present at the QTL. This explained 13 and 20% of total variability in WFL and the distance between small vascular bundles, respectively. The mutation apparently occurred during rice domestication and spread into japonica, tropical japonica, and indica subgroups. Notably, one accession, Phulba, had a NAL1 allele encoding only the N-terminal, or one-fourth, of the wild-type peptide. Given that the Phulba allele and the histidine-type allele showed essentially the same phenotype, the histidine-type allele was regarded as malfunctional. The phenotypes of transgenic plants varied depending on the ratio of histidine-type alleles to arginine-type alleles, raising the possibility that H(233)-type products function differently from and compete with R(233)-type products.


Assuntos
Oryza/genética , Folhas de Planta/genética , Proteínas de Plantas/genética , Locos de Características Quantitativas/genética , Alelos , Mapeamento Cromossômico , Estudo de Associação Genômica Ampla , Genótipo , Mutação , Fenótipo , Plantas Geneticamente Modificadas/genética
5.
Theor Appl Genet ; 128(4): 563-73, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25762131

RESUMO

KEY MESSAGE: This manuscript reports the fine mapping of a novel QTL, qAC2 controlling the low amylose in rice. The action mechanism of the qAC2 is also investigated by the analysis of genetic interactions to Wx (a), Wx (b), du1, du2 and du3. Amylose content of the rice (Oryza sativa L.) endosperm greatly affects starch properties and eating quality of cooked rice. Seeds of japonica rice cultivar Kuiku162 have low amylose content (AC) and good eating quality. Our analysis revealed a novel QTL, designated as qAC2 that contributed to the low AC of Kuiku162. qAC2 was fine mapped within a 74.9-kb region between two insertion and deletion markers, KID3001 and KID5101, on the long arm of chromosome 2. Seven genes are predicted in this region, but none of them is known to be related to the regulation of AC. The AC of a near-isogenic line (NIL110) carrying qAC2 (Kuiku), the Kuiku162 allele of qAC2, in the genetic background of japonica cultivar Itadaki was lower by 1.1% points than that of Itadaki. The chain length distributions of amylopectin were similar in NIL110 and Itadaki; therefore, the low AC of NIL110 was caused by a decrease in the actual AC, but not by a difference in the amylopectin structure. The interaction analyses revealed that qAC2 (Kuiku) has epistatic interaction with Wx (a). The qAC2 (Kuiku) has epistatic interactions with two loci, du1 and du2, on Wx (b), whereas the genetic effect of qAC2 (Kuiku) has additive to that of du3 on Wx (b). Thus, similar to du1 and du2, qAC2 may have a function related to Wx (b) mRNA splicing.


Assuntos
Amilose/química , Mapeamento Cromossômico , Oryza/genética , Locos de Características Quantitativas , Alelos , Amilopectina/química , Cromossomos de Plantas , Epistasia Genética , Regulação da Expressão Gênica de Plantas , Ligação Genética , Marcadores Genéticos , Mutação INDEL , Repetições de Microssatélites , Oryza/química , Sementes/química
6.
J Exp Bot ; 66(5): 1227-36, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25534925

RESUMO

A decline in rice (Oryza sativa L.) production caused by heat stress is one of the biggest concerns resulting from future climate change. Rice spikelets are most susceptible to heat stress at flowering. The early-morning flowering (EMF) trait mitigates heat-induced spikelet sterility at the flowering stage by escaping heat stress during the daytime. We attempted to develop near-isogenic lines (NILs) for EMF in the indica-type genetic background by exploiting the EMF locus from wild rice, O. officinalis (CC genome). A stable quantitative trait locus (QTL) for flower opening time (FOT) was detected on chromosome 3. A QTL was designated as qEMF3 and it shifted FOT by 1.5-2.0 h earlier for cv. Nanjing 11 in temperate Japan and cv. IR64 in the Philippine tropics. NILs for EMF mitigated heat-induced spikelet sterility under elevated temperature conditions completing flower opening before reaching 35°C, a general threshold value leading to spikelet sterility. Quantification of FOT of cultivars popular in the tropics and subtropics did not reveal the EMF trait in any of the cultivars tested, suggesting that qEMF3 has the potential to advance FOT of currently popular cultivars to escape heat stress at flowering under future hotter climates. This is the first report to examine rice with the EMF trait through marker-assisted breeding using wild rice as a genetic resource.


Assuntos
Flores/crescimento & desenvolvimento , Oryza/genética , Locos de Características Quantitativas , Cruzamento , Clima , Flores/genética , Flores/fisiologia , Temperatura Alta , Oryza/crescimento & desenvolvimento , Oryza/fisiologia , Estresse Fisiológico
7.
BMC Genomics ; 15: 346, 2014 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-24885019

RESUMO

BACKGROUND: High-yielding cultivars of rice (Oryza sativa L.) have been developed in Japan from crosses between overseas indica and domestic japonica cultivars. Recently, next-generation sequencing technology and high-throughput genotyping systems have shown many single-nucleotide polymorphisms (SNPs) that are proving useful for detailed analysis of genome composition. These SNPs can be used in genome-wide association studies to detect candidate genome regions associated with economically important traits. In this study, we used a custom SNP set to identify introgressed chromosomal regions in a set of high-yielding Japanese rice cultivars, and we performed an association study to identify genome regions associated with yield. RESULTS: An informative set of 1152 SNPs was established by screening 14 high-yielding or primary ancestral cultivars for 5760 validated SNPs. Analysis of the population structure of high-yielding cultivars showed three genome types: japonica-type, indica-type and a mixture of the two. SNP allele frequencies showed several regions derived predominantly from one of the two parental genome types. Distinct regions skewed for the presence of parental alleles were observed on chromosomes 1, 2, 7, 8, 11 and 12 (indica) and on chromosomes 1, 2 and 6 (japonica). A possible relationship between these introgressed regions and six yield traits (blast susceptibility, heading date, length of unhusked seeds, number of panicles, surface area of unhusked seeds and 1000-grain weight) was detected in eight genome regions dominated by alleles of one parental origin. Two of these regions were near Ghd7, a heading date locus, and Pi-ta, a blast resistance locus. The allele types (i.e., japonica or indica) of significant SNPs coincided with those previously reported for candidate genes Ghd7 and Pi-ta. CONCLUSIONS: Introgression breeding is an established strategy for the accumulation of QTLs and genes controlling high yield. Our custom SNP set is an effective tool for the identification of introgressed genome regions from a particular genetic background. This study demonstrates that changes in genome structure occurred during artificial selection for high yield, and provides information on several genomic regions associated with yield performance.


Assuntos
Genoma de Planta , Oryza/genética , Alelos , Cromossomos de Plantas , Frequência do Gene , Estudo de Associação Genômica Ampla , Genótipo , Sequenciamento de Nucleotídeos em Larga Escala , Japão , Desequilíbrio de Ligação , Oryza/classificação , Fenótipo , Filogenia , Proteínas de Plantas/classificação , Proteínas de Plantas/genética , Polimorfismo de Nucleotídeo Único , Análise de Sequência de DNA
8.
Ann Bot ; 106(3): 515-20, 2010 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-20566680

RESUMO

BACKGROUND AND AIMS: High temperatures over 32-36 degrees C at anthesis induce spikelet sterility in rice. The use of a germplasm with an early-morning flowering (EMF) trait has been hypothesized as a way of avoiding this problem. In this study, the effect of the EMF trait on avoiding high temperature-induced sterility at anthesis by flowering at a cooler temperature in the early morning was evaluated. METHODS: The EMF trait was introgressed from wild rice (Oryza officinalis) into the rice cultivar 'Koshihikari' (O. sativa). First, spikelets of the EMF line and Koshihikari were subjected to rising temperatures during the daytime in the greenhouse to test for differences in spikelet sterility. Secondly, spikelets of both plants were exposed to 26, 34 and 38 degrees C at anthesis and to 38 degrees C beginning at least 1 h after flowering, in the growth chambers at 70 % relative humidity, to test for differences in tolerance to high temperatures. KEY RESULTS: Spikelets of the EMF line started and completed flowering a few hours earlier than Koshihikari. In a greenhouse experiment, spikelets of Koshihikari opened after the air temperature reached 35 degrees C, but those of the EMF line could open at cooler temperatures. Under these conditions, spikelet sterility significantly increased in Koshihikari, but did not in the EMF line. The number of sterile spikelets increased as their flowering time was delayed in Koshihikari. Furthermore, the chamber experiments revealed that 60 % of the spikelets from both lines were sterile when exposed to 38 degrees C at anthesis, indicating that tolerance of high temperature was similar in both genotypes. CONCLUSIONS: Reduced sterility in the EMF line subjected to rising temperatures at anthesis in the greenhouse was attributed to an earlier flowering time compared with Koshihikari. The EMF trait of wild rice is effective in mitigating anticipated yield loss due to global warming by escaping high-temperature stress at anthesis during the daytime.


Assuntos
Temperatura Alta , Oryza/genética , Adaptação Fisiológica , Oryza/fisiologia
9.
Funct Plant Biol ; 31(7): 671-684, 2004 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32688938

RESUMO

The natural variation in starch synthase IIa (SSIIa) of rice (Oryza sativa L.) was characterised using near-isogenic lines (NILs). SSIIa is a candidate for the alk gene regulating the alkali disintegration of rice grains, since both genes are genetically mapped at the same position on chromosome 6 and related to starch properties. In this study, we report that the alkali-susceptible cultivar Nipponbare lacked SSIIa activity in endosperm. However, the activity was detected with NILs having the alk allele of alkali-tolerant Kasalath. SSIIa protein was present even in Nipponbare endosperm, but it was not associated with starch granules at the milky stage of endosperm. Three single-nucleotide polymorphisms (SNPs) predicting amino acid substitutions existed between the cDNA sequences of SSIIa of Nipponbare and Kasalath were genotyped with 65 rice cultivars and four wild relatives of cultivated rice. The results obtained explain the potential importance of two of the amino acid residues for starch association of rice SSIIa. An analysis of the chain-length distribution of ß-limit dextrin of amylopectin showed that without SSIIa activity, the relative number of A-chains (the short chains without branches) increased and that of B1-chains (the short chains with branches) decreased. This suggests that, given the SSIIa defect, short A-chains could not reach a sufficient length for branching enzymes to act on them to produce B1-chains.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...