Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mol Biol Evol ; 2024 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-38850168

RESUMO

We developed phyloBARCODER (https://github.com/jun-inoue/phyloBARCODER), a new web tool that can identify short DNA sequences to the species level using metabarcoding. phyloBARCODER estimates phylogenetic trees based on uploaded anonymous DNA sequences and reference sequences from databases. Without such phylogenetic contexts, alternative, similarity-based methods independently identify species names and anonymous sequences of the same group by pairwise comparisons between queries and database sequences, with the caveat that they must match exactly or very closely. By putting metabarcoding sequences into a phylogenetic context, phyloBARCODER accurately identifies (1) species or classification of query sequences and (2) anonymous sequences associated with the same species or even with populations of query sequences, with clear and accurate explanations. Version 1 of phyloBARCODER stores a database comprising all eukaryotic mitochondrial gene sequences. Moreover, by uploading their own databases, phyloBARCODER users can conduct species identification specialized for sequences obtained from a local geographic region or those of non-mitochondrial genes, e.g., ITS or rbcL.

2.
PeerJ ; 11: e15427, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37334134

RESUMO

Background: Zooplankton plays an important role in the marine ecosystem. A high level of taxonomic expertise is necessary for accurate species identification based on morphological characteristics. As an alternative method to morphological classification, we focused on a molecular approach using 18S and 28S ribosomal RNA (rRNA) gene sequences. This study investigates how the accuracy of species identification by metabarcoding improves when taxonomically verified sequences of dominant zooplankton species are added to the public database. The improvement was tested by using natural zooplankton samples. Methods: rRNA gene sequences were obtained from dominant zooplankton species from six sea areas around Japan and registered in the public database for improving the accuracy of taxonomic classifications. Two reference databases with and without newly registered sequences were created. Comparison of detected OTUs associated with single species between the two references was done using field-collected zooplankton samples from the Sea of Okhotsk for metabarcoding analysis to verify whether or not the newly registered sequences improved the accuracy of taxonomic classifications. Results: A total of 166 sequences in 96 species based on the 18S marker and 165 sequences in 95 species based on the 28S marker belonging to Arthropoda (mostly Copepoda) and Chaetognatha were registered in the public database. The newly registered sequences were mainly composed of small non-calanoid copepods, such as species belonging to Oithona and Oncaea. Based on the metabarcoding analysis of field samples, a total of 18 out of 92 OTUs were identified at the species level based on newly registered sequences in the data obtained by the 18S marker. Based on the 28S marker, 42 out of 89 OTUs were classified at the species level based on taxonomically verified sequences. Thanks to the newly registered sequences, the number of OTUs associated with a single species based on the 18S marker increased by 16% in total and by 10% per sample. Based on the 28S marker, the number of OTUs associated with a single species increased by 39% in total and by 15% per sample. The improved accuracy of species identification was confirmed by comparing different sequences obtained from the same species. The newly registered sequences had higher similarity values (mean >0.003) than the pre-existing sequences based on both rRNA genes. These OTUs were identified at the species level based on sequences not only present in the Sea of Okhotsk but also in other areas. Discussion: The results of the registration of new taxonomically verified sequences and the subsequent comparison of databases based on metabarcoding data of natural zooplankton samples clearly showed an increase in accuracy in species identification. Continuous registration of sequence data covering various environmental conditions is necessary for further improvement of metabarcoding analysis of zooplankton for monitoring marine ecosystems.


Assuntos
Ecossistema , Zooplâncton , Animais , Zooplâncton/genética , RNA Ribossômico 28S/genética , Genes de RNAr , Biodiversidade
3.
PLoS Pathog ; 19(6): e1011386, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37347729

RESUMO

Sea lice, the major ectoparasites of fish, have significant economic impacts on wild and farmed finfish, and have been implicated in the decline of wild salmon populations. As blood-feeding arthropods, sea lice may also be reservoirs for viruses infecting fish. However, except for two groups of negative-strand RNA viruses within the order Mononegavirales, nothing is known about viruses of sea lice. Here, we used transcriptomic data from three key species of sea lice (Lepeophtheirus salmonis, Caligus clemensi, and Caligus rogercresseyi) to identify 32 previously unknown RNA viruses. The viruses encompassed all the existing phyla of RNA viruses, with many placed in deeply branching lineages that likely represent new families and genera. Importantly, the presence of canonical virus-derived small interfering RNAs (viRNAs) indicates that most of these viruses infect sea lice, even though in some cases their closest classified relatives are only known to infect plants or fungi. We also identified both viRNAs and PIWI-interacting RNAs (piRNAs) from sequences of a bunya-like and two qin-like viruses in C. rogercresseyi. Our analyses showed that most of the viruses found in C. rogercresseyi occurred in multiple life stages, spanning from planktonic to parasitic stages. Phylogenetic analysis revealed that many of the viruses infecting sea lice were closely related to those that infect a wide array of eukaryotes with which arthropods associate, including fungi and parasitic tapeworms, implying that over evolutionary time there has been cross-phylum and cross-kingdom switching of viruses between arthropods and other eukaryotes. Overall, this study greatly expands our view of virus diversity in crustaceans, identifies viruses that infect and replicate in sea lice, and provides evidence that over evolutionary time, viruses have switched between arthropods and eukaryotic hosts in other phyla and kingdoms.


Assuntos
Copépodes , Doenças dos Peixes , Vírus de RNA , Animais , Copépodes/genética , Filogenia , Vírus de RNA/genética , Salmão/genética , Salmão/parasitologia , RNA Interferente Pequeno
4.
Microbes Environ ; 37(5)2022.
Artigo em Inglês | MEDLINE | ID: mdl-34980753

RESUMO

Zooplankton and viruses play a key role in marine ecosystems; however, their interactions have not been examined in detail. In the present study, the diversity of viruses associated with zooplankton collected using a plankton net (mesh size: 100| |µm) in the subtropical western North Pacific was investigated by fragmented and primer ligated dsRNA sequencing. We obtained 21 and 168 operational taxonomic units (OTUs) of ssRNA and dsRNA viruses, respectively, containing RNA-dependent RNA polymerase (RdRp). These OTUs presented average amino acid similarities of 43.5 and 44.0% to the RdRp genes of known viruses in ssRNA viruses and dsRNA viruses, respectively. Dominant OTUs mainly belonged to narna-like and picorna-like ssRNA viruses and chryso-like, partiti-like, picobirna-like, reo-like, and toti-like dsRNA viruses. Phylogenetic ana-lyses of the RdRp gene revealed that OTUs were phylogenetically diverse and clustered into distinct clades from known viral groups. The community structure of the same zooplankton sample was investigated using small subunit (SSU) rRNA sequences assembled from the metatranscriptome of single-stranded RNA. More than 90% of the sequence reads were derived from metazoan zooplankton; copepods comprised approximately 70% of the sequence reads. Although this ana-lysis provided no direct evidence of the host species of RNA viruses, these dominant zooplankton are expected to be associated with the RNA viruses detected in the present study. The present results indicate that zooplankton function as a reservoir of diverse RNA viruses and suggest that investigations of zooplankton viruses will provide a more detailed understanding of the role of viruses in marine ecosystems.


Assuntos
Vírus de RNA , Água do Mar/virologia , Zooplâncton , Animais , Ecossistema , Oceano Pacífico , Filogenia , Vírus de RNA/genética , RNA de Cadeia Dupla/genética , RNA Viral/genética , RNA Polimerase Dependente de RNA/genética
5.
Sci Rep ; 11(1): 23265, 2021 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-34853330

RESUMO

Trophic sources and pathways supporting early life stages are crucial for survival of forage fishes recruiting around the oligotrophic and unproductive Kuroshio. However, information is limited for the Kuroshio planktonic food web and its trophodynamics because of its high biodiversity. Here, we explore trophic sources and linkages in the Kuroshio plankton community using metabarcoding analysis of gut-content DNA for 22 mesozooplankton groups. The major prey was dinoflagellates and calanoids for omnivorous groups, and calanoids and gelatinous organisms for carnivorous groups. Larvaceans and hydrozoans were the most frequently appeared prey for both omnivores and carnivores, whereas they were minor constituents of the available prey in water samples. Although calanoids overlapped as major prey items for both omnivores and carnivores because they were the most available, contributions from phytoplankton and gelatinous prey differed among taxonomic groups. Further analysis of the metabarcoding data showed that in addition to omnivorous copepods like calanoids, gelatinous groups like larvaceans and hydrozoans were important hubs in the planktonic food web with their multiple trophic linkages to many components. These findings suggest that gelatinous organisms are important as supplementary prey and provide evidence of niche segregation on trophic sources among mesozooplankton groups in the Kuroshio.


Assuntos
Código de Barras de DNA Taxonômico , Fitoplâncton/metabolismo , Plâncton/fisiologia , Animais , Biomassa , China , Biologia Computacional , Copépodes/genética , Dinoflagellida/genética , Ecossistema , Peixes/genética , Cadeia Alimentar , Sequenciamento de Nucleotídeos em Larga Escala , Japão , Análise Multivariada , Água , Zooplâncton/genética
6.
PLoS One ; 15(5): e0233189, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32407365

RESUMO

A clear insight into the large-scale community structure of planktonic copepods is critical to understanding the mechanisms controlling diversity and biogeography of marine taxa in terms of their high abundance, ubiquity, and sensitivity to environmental changes. Here, we applied a 28S metabarcoding approach to large-scale communities of epipelagic and mesopelagic copepods at 70 stations across the Pacific Ocean and three stations in the Arctic Ocean. Major patterns of community structure and diversity, influenced by water mass structures, agreed with results from previous morphology-based studies. However, a large-scale metabarcoding approach could detect community changes even under stable environmental conditions, including changes in the north/south subtropical gyres and east/west areas within each subtropical gyre. There were strong effects of the epipelagic environment on mesopelagic communities, and community subdivisions were observed in the environmentally stable mesopelagic layer. In each sampling station, higher operational taxonomic unit (OTU) numbers and lower phylogenetic diversity were observed in the mesopelagic layer than in the epipelagic layer, indicating a recent rapid increase in species numbers in the mesopelagic layer. The phylogenetic analysis utilizing representative sequences of OTUs revealed trends of recent emergence of cold-water OTUs, which are mainly distributed at high latitudes with low water temperatures. Conversely, the high diversity of copepods at low latitudes was suggested to have been formed through long evolution under high water temperature conditions. The metabarcoding results suggest that evolutionary processes have strong impacts on current patterns of copepod diversity, and support the "out of the tropics" theory explaining latitudinal diversity gradients of copepods. Diversity patterns in both epipelagic and mesopelagic copepods was highly correlated to sea surface temperature; thus, predicted global warming may have a significant impact on copepod diversity in both layers.


Assuntos
Copépodes/genética , Código de Barras de DNA Taxonômico/métodos , Ecossistema , Animais , Sequência de Bases , Biodiversidade , Análise por Conglomerados , Modelos Lineares , Oceano Pacífico , Filogenia , Água do Mar , Temperatura
7.
PLoS One ; 12(7): e0181452, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28715458

RESUMO

Metagenetics is a rapid and taxonomically comprehensive method for revealing community structures within environmental samples, based on large amounts of sequence data produced by high-throughput sequencers. Because community structures of planktonic copepods are important in the ocean owing to their high diversity and abundance, a metagenetic analysis of the 28S D2 region using Roche 454 was previously developed. However, the Illumina MiSeq platform with a high sequence output is being used more frequently in metagenetics, and non-calanoid copepods have not previously been fully evaluated. Here, we evaluated an Illumina MiSeq-based metagenetic analysis using a mock community and field-collected samples that were examined in a previous study using Roche 454, and the community structure, including non-calanoid copepods, was compared among morphological and metagenetic analyses. We removed a singleton read and applied an appropriate abundance threshold to remove erroneous Molecular Operational Taxonomic Units (MOTUs) with low-abundance sequences in the MiSeq-based analysis. Results showed that the copepod community was successfully characterized using Illumina MiSeq. Higher-quality sequences were obtained using MiSeq than by Roche 454, which reduced the overestimation of diversity, especially at a strict 99% similarity threshold for MOTU clustering. Taxonomic compositions in terms of both biomass and presence/absence of species, including non-calanoids, were more appropriately represented in the MiSeq- than in Roche 454-based analysis. Our data showed that metagenetic analysis using Illumina MiSeq is more useful for revealing copepod communities than Roche 454, owing to the lower cost and higher quality.


Assuntos
Copépodes/genética , Sequenciamento de Nucleotídeos em Larga Escala/instrumentação , Metagenoma/genética , Metagenômica/instrumentação , Plâncton/genética , Animais , Biodiversidade , Classificação , Biologia Computacional , Oceanos e Mares
8.
Microbiologyopen ; 5(6): 1016-1026, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27353240

RESUMO

Dinitrogen fixation, the biological reduction in N2 gas to ammonia contributes to the supply of new nitrogen in the surface ocean. To understand the diversity and abundance of potentially diazotrophic (N2 fixing) microorganisms associated with marine zooplankton, especially copepods, the nifH gene was studied using zooplankton samples collected in the Pacific Ocean. In total, 257 nifH sequences were recovered from 23 nifH-positive DNA extracts out of 90 copepod samples. The nifH genes derived from cyanobacteria related to Trichodesmium, α- and γ-subdivisions of proteobacteria, and anaerobic euryarchaeota related to Methanosaeta concilii were detected. Our results indicated that Pleuromamma, Pontella, and Euchaeta were the major copepod genera hosting dinitrogen fixers, though we found no species-specific association between copepods and dinitrogen fixers. Also, the digital PCR provided novel data on the number of copies of the nifH gene in individual copepods, which we report the range from 30 to 1666 copies per copepod. This study is the first systematic study of zooplankton-associated diazotrophs, covering a large area of the open ocean, which provide a clue to further study of a possible new hotspot of N2 fixation.


Assuntos
Alphaproteobacteria/genética , Betaproteobacteria/genética , Copépodes/microbiologia , Methanosarcinales/genética , Fixação de Nitrogênio/genética , Oxirredutases/genética , Trichodesmium/genética , Zooplâncton/microbiologia , Alphaproteobacteria/enzimologia , Animais , Betaproteobacteria/enzimologia , Methanosarcinales/enzimologia , Oceano Pacífico , Trichodesmium/enzimologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...