Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Physiol Behav ; 234: 113389, 2021 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-33741375

RESUMO

Exercise behavior is under partial genetic control, but it is also affected by numerous environmental factors, potentially including early-life experiences whose effects persist into adulthood. We studied genetic and early-life environmental effects on wheel-running behavior in a mouse model that includes four replicate high runner (HR) lines selectively bred for increased voluntary wheel running as young adults and four non-selected control (C) lines. In a full factorial design, mice from each line were granted wheel access or not and administered either standard or Western diet (WD) from weaning (3 weeks old) to 6 weeks of age (sexual maturity). In addition to acute effects, after a washout period of 8 weeks (∼6 human years) in which all mice had standard diet and no wheel access, we found both beneficial and detrimental effects of these early-life exposures. During the first week of treatments, WD increased distance run by 29% in C mice and 48% in HR mice (significant Diet × Linetype interaction), but diet effects disappeared by the third week. Across the three weeks of juvenile treatment, WD significantly increased fat mass (with lean mass as a covariate). Tested as adults, early-life exercise increased wheel running of C mice but not HR mice in the first week. Early-life exercise also reduced adult anxiety-like behavior and increased adult fasted blood glucose levels, triceps surae mass, subdermal fat pad mass, and brain mass, but decreased heart ventricle mass. Using fat mass as a covariate, early-life exercise treatment increased adult leptin concentration. In contrast, early-life WD increased adult wheel running of HR mice but not C mice. Early-life WD also increased adult lean mass and adult preference for Western diet in all groups. Surprisingly, early-life treatment had no significant effect on adult body fat or maximal aerobic capacity (VO2max). No previous study has tested for combined or interactive effects of early-life WD and exercise. Our results demonstrate that both factors can have long-lasting effects on adult voluntary exercise and related phenotypes, and that these effects are modulated by genetic background. Overall, the long-lasting effects of early-life exercise were more pervasive than those of WD, suggesting critical opportunities for health intervention in childhood habits, as well as possible threats from modern challenges. These results may be relevant for understanding potential effects of activity reductions and dietary changes associated with the obesity epidemic and COVID-19 pandemic.


Assuntos
Dieta Ocidental , Atividade Motora , Adiposidade , Animais , Dieta Ocidental/efeitos adversos , Camundongos , Camundongos Endogâmicos , Fenótipo
2.
Genes Brain Behav ; 20(2): e12700, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-32909333

RESUMO

Behavioral addictions can come in many forms, including overeating, gambling and overexercising. All addictions share a common mechanism involving activation of the natural reward circuit and reinforcement learning, but the extent to which motivation for natural and drug rewards share similar neurogenetic mechanisms remains unknown. A unique mouse genetic model in which four replicate lines of female mice were selectively bred (>76 generations) for high voluntary wheel running (High Runner or HR lines) alongside four non-selected control (C) lines were used to test the hypothesis that high motivation for exercise is associated with greater reward for cocaine (20 mg/kg) and methylphenidate (10 mg/kg) using the conditioned place preference (CPP) test. HR mice run ~three times as many revolutions/day as C mice, but the extent to which they have increased motivation for other rewards is unknown. Both HR and C mice displayed significant CPP for cocaine and methylphenidate, but with no statistical difference between linetypes for either drug. Taken together, results suggest that selective breeding for increased voluntary running has modified the reward circuit in the brain in a way that increases motivation for running without affecting cocaine or methylphenidate reward.


Assuntos
Transtornos Relacionados ao Uso de Cocaína/genética , Locomoção/genética , Seleção Artificial , Animais , Encéfalo/fisiologia , Encéfalo/fisiopatologia , Transtornos Relacionados ao Uso de Cocaína/fisiopatologia , Feminino , Camundongos , Camundongos Endogâmicos ICR , Motivação , Condicionamento Físico Animal/métodos , Recompensa
3.
Elife ; 82019 06 06.
Artigo em Inglês | MEDLINE | ID: mdl-31169497

RESUMO

Evolutionary studies are often limited by missing data that are critical to understanding the history of selection. Selection experiments, which reproduce rapid evolution under controlled conditions, are excellent tools to study how genomes evolve under selection. Here we present a genomic dissection of the Longshanks selection experiment, in which mice were selectively bred over 20 generations for longer tibiae relative to body mass, resulting in 13% longer tibiae in two replicates. We synthesized evolutionary theory, genome sequences and molecular genetics to understand the selection response and found that it involved both polygenic adaptation and discrete loci of major effect, with the strongest loci tending to be selected in parallel between replicates. We show that selection may favor de-repression of bone growth through inactivating two limb enhancers of an inhibitor, Nkx3-2. Our integrative genomic analyses thus show that it is possible to connect individual base-pair changes to the overall selection response.


Assuntos
Adaptação Biológica , Cruzamento/métodos , Extremidades/anatomia & histologia , Seleção Genética , Animais , Camundongos , Sequenciamento Completo do Genoma
4.
Behav Genet ; 49(1): 49-59, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30324246

RESUMO

Indirect genetic effects (IGEs; the heritable influence of one organism on a conspecific) can affect the evolutionary dynamics of complex traits, including behavior. Voluntary wheel running is an important model system in quantitative genetic studies of behavior, but the possibility of IGEs on wheel running and its components (time spent running and average running speed) has not been examined. Here, we analyze a dataset from a replicated selection experiment on wheel running (11,420 control and 26,575 selected mice measured over 78 generations) in which the standard measurement protocol allowed for the possibility of IGEs occurring through odors because mice were provided with clean cages attached to a clean wheel or a wheel previously occupied by another mouse for 6 days. Overall, mice ran less on previously occupied wheels than on clean wheels, and they ran significantly less when following a male than a female. Significant interactions indicated that the reduction in running was more pronounced for females than males and for mice from selected lines than control mice. Pedigree-based "animal model" analyses revealed significant IGEs for running distance (the trait under selection), with effect sizes considerably higher for the initial/exploratory phase (i.e., first two of six test days). Our results demonstrate that IGEs can occur in mice interacting through scent only, possibly because they attempt to avoid conspecifics.


Assuntos
Atividade Motora/genética , Esforço Físico/genética , Esforço Físico/fisiologia , Animais , Epigênese Genética/genética , Epigênese Genética/fisiologia , Feminino , Masculino , Camundongos , Atividade Motora/fisiologia , Odorantes , Fenótipo , Condicionamento Físico Animal/métodos , Corrida , Seleção Genética/fisiologia , Caracteres Sexuais , Olfato/fisiologia
5.
Physiol Behav ; 194: 1-8, 2018 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-29680707

RESUMO

Physical activity is an important component of energy expenditure, and acute changes in activity can lead to energy imbalances that affect body composition, even under ad libitum food availability. One example of acute increases in physical activity is four replicate, selectively-bred High Runner (HR) lines of mice that voluntarily run ~3-fold more wheel revolutions per day over 6-day trials and are leaner, as compared with four non-selected control (C) lines. We expected that voluntary exercise would increase food consumption, build lean mass, and reduce fat mass, but that these effects would likely differ between HR and C lines or between the sexes. We compared wheel running, cage activity, food consumption, and body composition between HR and C lines for young adults of both sexes, and examined interrelationships of those traits across 6 days of wheel access. Before wheel testing, HR mice weighed less than C, primarily due to reduced lean mass, and females were lighter than males, entirely due to lower lean mass. Over 6 days of wheel access, all groups tended to gain small amounts of lean mass, but lose fat mass. HR mice lost less fat than C mice, in spite of much higher activity levels, resulting in convergence to a fat mass of ~1.7 g for all 4 groups. HR mice consumed more food than C mice (with body mass as a covariate), even accounting for their higher activity levels. No significant sex-by-linetype interactions were observed for any of the foregoing traits. Structural equation models showed that the four sex-by-linetype groups differed considerably in the complex phenotypic architecture of these traits. Interrelationships among traits differed by genetic background and sex, lending support to the idea that recommendations regarding weight management, diet, and exercise may need to be tailored to the individual level.


Assuntos
Tecido Adiposo/fisiologia , Composição Corporal/fisiologia , Ingestão de Alimentos/fisiologia , Atividade Motora/fisiologia , Animais , Peso Corporal/fisiologia , Feminino , Masculino , Camundongos , Camundongos Endogâmicos , Caracteres Sexuais
6.
Physiol Behav ; 179: 235-245, 2017 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-28625550

RESUMO

Some human diseases, including obesity, Type II diabetes, and numerous cancers, are thought to be influenced by environments experienced in early life, including in utero. Maternal diet during the perinatal period may be especially important for adult offspring energy balance, potentially affecting both body composition and physical activity. This effect may be mediated by the genetic background of individuals, including, for example, potential "protective" mechanisms for individuals with inherently high levels of physical activity or high basal metabolic rates. To examine some of the genetic and environmental factors that influence adult activity levels, we used an ongoing selection experiment with 4 replicate lines of mice bred for high voluntary wheel running (HR) and 4 replicate, non-selected control lines (C). Dams (half HR and half C) were fed a "Western" diet (WD, high in fat and sucrose) or a standard diet (SD) from 2weeks prior to mating until their pups could feed on solid food (14days of age). We analyzed dam and litter characteristics from birth to weaning, and offspring mass and physical activity into adulthood. One male offspring from each litter received additional metabolic and behavioral tests. Maternal WD caused pups to eat solid food significantly earlier for C litters, but not for HR litters (interaction of maternal environment and genotype). With dam mass as a covariate, mean pup mass was increased by maternal WD but litter size was unaffected. HR dams had larger litters and tended to have smaller pups than C dams. Home-cage activity of juvenile focal males was increased by maternal WD. Juvenile lean mass, fat mass, and fat percent were also increased by maternal WD, but food consumption (with body mass as a covariate) was unaffected (measured only for focal males). Behavior in an elevated plus maze, often used to indicate anxiety, was unaffected by maternal WD. Maximal aerobic capacity (VO2max) was also unaffected by maternal WD, but HR had higher VO2max than C mice. Adult lean, fat, and total body masses were significantly increased by maternal WD, with greater increase for fat than for lean mass. Overall, no aspect of adult wheel running (total distance, duration, average running speed, maximum speed) or home-cage activity was statistically affected by maternal WD. However, analysis of the 8 individual lines revealed that maternal WD significantly increased wheel running in one of the 4 HR lines. On average, all groups lost fat mass after 6days of voluntary wheel running, but the absolute amount lost was greater for mice with maternal WD resulting in no effect of maternal WD on absolute or % body fat after wheel access. All groups gained lean and total body mass during wheel access, regardless of maternal WD or linetype. Measured after wheel access, circulating leptin, adiponectin, and corticosterone concentrations were unaffected by maternal WD and did not differ between HR and C mice. With body mass as a covariate, heart ventricle mass was increased by maternal WD in both HR and C mice, but fat pads, liver, spleen, and brain masses were unaffected. As found previously, HR mice had larger brains than C mice. Body mass of grand-offspring was unaffected by grand-maternal WD, but grand-offspring wheel running was significantly increased for one HR line and decreased for another HR line by grand-maternal WD. In summary, maternal Western diet had long-lasting and general effects on offspring adult morphology, but effects on adult behavior were limited and contingent on sex and genetic background.


Assuntos
Composição Corporal/genética , Composição Corporal/fisiologia , Dieta Ocidental/efeitos adversos , Interação Gene-Ambiente , Fenômenos Fisiológicos da Nutrição Pré-Natal/genética , Corrida/fisiologia , Animais , Animais não Endogâmicos , Ansiedade/genética , Ansiedade/fisiopatologia , Ingestão de Alimentos/genética , Ingestão de Alimentos/fisiologia , Feminino , Masculino , Exposição Materna , Camundongos Endogâmicos ICR , Gravidez , Especificidade da Espécie , Volição
7.
Physiol Biochem Zool ; 89(6): 457-461, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27792537

RESUMO

Understanding evolution is a necessary component of undergraduate education in biology, and evolution is difficult to explain without studying the heritability of traits. However, in most classes, heritability is presented with only a handful of graphs showing typical morphological traits, for example, beak size in finches and height in humans. The active-inquiry exercise outlined in the following pages allows instructors to engage students in this formerly dry subject by bringing their own data as the basis for estimates of heritability. Students are challenged to come up with their own hypotheses regarding how and to what extent their traits are inherited from their parents and then gather, analyze data, and make inferences with help from the instructor. The exercise is simple in concept and execution but uncovers many new avenues of inquiry for students, including potential biases in their estimates of heritability and misconceptions that they may have had about the extent of inference that can be made from their heritability estimates. The active-inquiry format of the exercise prioritizes curiosity and discussion, leading to a much deeper understanding of heritability and the scientific method.


Assuntos
Evolução Biológica , Genética/educação , Padrões de Herança , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...