Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Biosci Bioeng ; 128(3): 264-273, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-30975564

RESUMO

The ascomycete Trichoderma reesei is known to produce a variety of cellulases and hemicellulases and the hyper-cellulolytic mutants of this fungus are useful as industrial cellulase producers. In Japan, PC-3-7, derived from the early mutant QM9414, is well-known as a cellulase hyperproducing mutant. In addition to the productivity of enzymes, the composition of secreted enzymes greatly influences biomass saccharification. Therefore, we evaluated the cellulase productivity of T. reesei mutants in Japan at different pH as a factor influencing enzyme production. At higher pH values, QM9414 exhibited reduced cellulase productivity whereas PC-3-7 maintained high cellulase productivity and gene expression at the transcriptional level. The gene encoding the pH-responsive transcription factor PACI did not mutate in PC-3-7, and its expression pattern against different pH conditions was similar between QM9414 and PC-3-7. Furthermore, the deletion of pac1 encoding PACI caused different expression patterns of cellulase genes between QM9414 and PC-3-7. Therefore, we suggest that T. reesei possesses a pH-responsive cellulase production mechanism that is different from the PACI-related mechanism. Finally, we identified that N-25, a strain developed at an early stage of mutant development acquired cellulase productivity at a higher pH. In this investigation, we also found and tested candidate genes possibly affecting pH response using comparative genome analysis.


Assuntos
Celulase/genética , Celulase/metabolismo , Engenharia de Proteínas/métodos , Trichoderma , Biomassa , Regulação Enzimológica da Expressão Gênica , Regulação Fúngica da Expressão Gênica , Glicosídeo Hidrolases/genética , Glicosídeo Hidrolases/metabolismo , Concentração de Íons de Hidrogênio , Japão , Organismos Geneticamente Modificados , Fatores de Transcrição/genética , Trichoderma/genética , Trichoderma/metabolismo
2.
Appl Microbiol Biotechnol ; 102(6): 2737-2752, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-29417196

RESUMO

The GH10 xylanase XYNIII is expressed in the hyper-cellulase-producing mutant PC-3-7, but not in the standard strain QM9414 of Trichoderma reesei. The GH11 xylanase gene xyn1 is induced by cellulosic and xylanosic carbon sources while xyn3 is induced only by cellulosic carbon sources in the PC-3-7 strain. In this study, we constructed a modified xyn3 promoter in which we replaced the cis-acting region of the xyn3 promoter by the cis-acting region of the xyn1 promoter. The resulting xyn3 chimeric promoter exhibited improved inductivity against cellulosic carbon over the wild-type promoter and acquired inductivity against xylanosic carbon. Furthermore, PC-3-7 expressing the heterologous ß-glycosidase gene, Aspergillus aculeatus bgl1, under the control of the xyn3 chimeric promoter, showed enhanced saccharification ability through increased cellobiase activity. We also show that the xyn3 chimeric promoter is also functional in the QM9414 strain. Our results indicate that the xyn3 chimeric promoter is very efficient for enzyme expression.


Assuntos
Regulação Fúngica da Expressão Gênica , Engenharia Metabólica/métodos , Regiões Promotoras Genéticas , Trichoderma/enzimologia , Trichoderma/genética , Xilosidases/genética , Aspergillus/enzimologia , Aspergillus/genética , Celulose/metabolismo , Trichoderma/metabolismo , Xilanos/metabolismo , beta-Glucosidase/genética , beta-Glucosidase/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...