Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Injury ; 49(12): 2154-2160, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30268514

RESUMO

In traumatology, we encounter several clinical challenges that involve extensive bone loss primarily related to trauma, conditions that can be treated with autologous grafts. A good alternative is the use of synthetic biomaterials as substitutes. These polymers provide a suitable environment for the growth of new bone and vascular tissue, which are essential for repair. Collagen/hydroxyapatite composites have proven to be biocompatible and to behave mechanically. Furthermore, the addition of chitosan contributes to the formation of a three-dimensional structure that permits cell adhesion and proliferation, thus improving osteogenesis. The aim of this study was to evaluate bone formation during the repair of bone defects experimentally induced in the skull of rats and grafted with a polymer blend consisting of bovine tendon collagen and chitosan combined with hydroxyapatite. Thirty animals were used for the creation of a defect in the left parietal bone and were divided into three groups of 10 animals each: a control group without biomaterial implantation, a group receiving the blend of collagen and chitosan, and a group receiving this blend combined with hydroxyapatite. Each group was subdivided and the animals were sacrificed 3 or 8 weeks after surgery. After sacrifice, the skulls were removed for macroscopic photodocumentation and radiographic examination. The samples were processed for histological evaluation of new bone formation at the surgical site. Macroscopic and radiographic analysis demonstrated the biocompatibility of the blends. Histologically, the formation of new bone occurred in continuity with the edges of the defect, with the observation of higher volumes in the grafted groups compared to control. Mineralization of sponges did not stimulate bone neoformation, with bone repair being incomplete over the experimental period. In conclusion, mineralization by the addition of hydroxyapatite should be better studied. However, the collagen/chitosan sponges used in this study are suitable to stimulate osteogenesis in cranial defects, although this process is slow and not sufficient to achieve complete bone regeneration over a short period of time.


Assuntos
Materiais Biocompatíveis/química , Substitutos Ósseos/química , Quitosana/farmacologia , Colágeno/farmacologia , Durapatita/farmacologia , Osteogênese/fisiologia , Fraturas Cranianas/patologia , Animais , Proteína Morfogenética Óssea 2 , Adesão Celular , Proliferação de Células , Modelos Animais de Doenças , Masculino , Ratos , Ratos Wistar , Fraturas Cranianas/cirurgia
2.
Injury ; 46(7): 1215-22, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25920373

RESUMO

The indication of biomaterials has increased substantially in the regenerative therapy of bone defects. However, in addition to evaluating the physicochemical properties of biomaterials, the quality of the recipient tissue is also essential for the osseointegration of implants, as abnormalities in bone metabolism, such as gonadal hormone deficiency, can influence bone healing. This study evaluated the osteoregenerative capacity of collagen membranes derived from bovine pericardium and intestinal serosa in the repair of cranial defects in ovariectomised rats. Thirty female Wistar rats were submitted to surgical creation of a 5-mm cranial bone defect. The rats were divided into a control group (not ovariectomised) and an ovariectomised group. The non-ovariectomised group was divided into three subgroups: control (G1) in which the defect was not filled with the biomaterial, and two subgroups (G2 and G3) that received the bovine pericardium- and serosa-derived collagen membranes, respectively. The ovariectomised group was divided into the same subgroups (G4, G5, and G6). The animals were sacrificed 8 weeks after surgery. The calvaria were removed for macroscopic and radiographic photodocumentation and processed for histomorphometric analysis of bone healing at the surgical site. Macroscopic, radiological, and microscopic analyses demonstrated the biocompatibility of the implanted collagen membranes, as indicated by the absence of infiltration and signs of inflammation at the surgical site. Histologically, discrete immature bone neoformation projecting from the margins of the defect was observed at the surgical site in ovariectomised groups when compared to the non-ovariectomised groups. The volume of newly formed bone was significantly higher in the non-ovariectomised groups (G1: 7.83%±1.32; G2: 21.33%±1.96; and G3: 22.83%±0.98) compared to the respective ovariectomised subgroups (G4: 3.16%±0.75; G5: 16.83%±0.98; and G6: 16.16%±0.75), thus demonstrating the deleterious effects of ovariectomy on bone homeostasis. Higher volumes of newly formed bone were observed in the groups receiving the membrane grafts (G2, G3, G5, and G6) compared to the control groups (G1 and G4). In conclusion, the bilateral ovariectomy compromises the ability to repair bone lesions grafted with osteoconductive biomaterials as in the case of collagen membranes derived from both bovine pericardium and intestinal serosa.


Assuntos
Materiais Biocompatíveis/farmacologia , Colágeno/farmacologia , Pericárdio/patologia , Crânio/patologia , Cicatrização/fisiologia , Animais , Bovinos , Modelos Animais de Doenças , Estudos de Viabilidade , Feminino , Ovariectomia , Ratos , Ratos Wistar , Transplante Heterólogo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...