Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Total Environ ; 875: 162638, 2023 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-36894091

RESUMO

Rapidly changing land use patterns and frequent extreme weather events have resulted in an increased sediment flux to freshwater systems globally, highlighting the need for land-use-based sediment source fingerprinting. Application of variability in hydrogen isotope compositions (δ2H values) of vegetation-specific biomarkers from soils and sediments is relatively underexplored for land-use-based freshwater suspended sediment (SS) source fingerprinting, but has the potential to complement the information from routinely applied carbon isotope analysis and provide new insights. We analysed δ2H values of long-chain fatty acids (LCFAs) as vegetation-specific biomarkers in source soils and SS collected from the mixed land use Tarland catchment (74 km2) in NE Scotland, to identify stream SS sources and quantify their contributions to SS. Plant growth form was the primary control on source soils LCFAs (n-C26:0, n-C28:0, n-C30:0) δ2H variability, while the isotopic composition of source water had no significant control. Forest and heather moorland soils covered with dicotyledonous and gymnosperm species were differentiated from arable land and grasslands soils covered with monocotyledonous species. SS samples collected for fourteen months from the Tarland catchment with a nested sampling approach showed monocot-based land use (cereal crops, grassland) to be the major source of SS with 71 ± 11% contribution on catchment-wide scale averaged throughout the sampling period. Storm events after a dry summer period and sustained high flow conditions in the streams during autumn and early winter suggested enhanced connectivity of more distant forest and heather moorland land uses covering relatively steep topography. This was shown by an increased contribution (44 ± 8%) on catchment-wide scale from dicot and gymnosperm-based land uses during the corresponding period. Our study demonstrated successful application of vegetation-specificity in δ2H values of LCFAs for land-use-based freshwater SS source fingerprinting in a mesoscale catchment where δ2H values of LCFAs were primarily controlled by plant growth forms.


Assuntos
Monitoramento Ambiental , Rios , Solo , Isótopos de Carbono/análise , Ácidos Graxos , Sedimentos Geológicos/análise , Água Doce/química , Monitoramento Ambiental/métodos
2.
Sci Total Environ ; 755(Pt 1): 142916, 2021 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-33172631

RESUMO

Intensification of land use is a primary cause of increased suspended sediment load in freshwater systems, hence land-use-specific sediment source tracing is necessary to inform sustainable land and water management. Here we tested the application of compound-specific isotope analysis (CSIA) of vegetation biomarkers to fingerprint suspended sediment sources from the mesoscale agricultural Tarland catchment (74 km2) in NE Scotland. Our aim was to test a parsimonious nested sampling approach from a headwater sub-catchment to apportion suspended sediment sources across headwater to catchment-wide scales. Compound-specific carbon isotopic signatures (δ13C) of long-chain fatty acids (LCFAs) from source soils were able to successfully distinguish between forest, heather moorland, permanent grassland, and arable land cover. Permanent grassland was a prominent source of sediment at both headwater and catchment scales, with an annual average contribution of 79% and 56%, respectively, indicating grazing pressure and runoff via preferential pathways. Increased sediment input from arable land at the catchment scale (40%) compared to the headwater sub-catchment (18%) indicated land use intensification in lowland areas. Forest and heather moorland contributed marginally to suspended sediments (~2%), despite covering 43% area of the catchment area. Temporal variability of sediment sources observed over fourteen months (May 2017 - June 2018) showed a higher relative contribution from arable land during summer and autumn and a higher contribution from permanent grassland during winter and spring, likely linked to seasonality of rainfall and agronomic activities. These results demonstrate a successful use of δ13C values of LCFAs to quantify land-use-specific suspended sediment sources. Comparison of two suspended sediment techniques showed usefulness of time-integrated mass samplers for representative and cost-effective sampling. We recommend that future nested sampling designs should include spatially distributed source soil tracer characterization covering the whole catchment area to reduce the uncertainty in sediment source attribution from headwaters to the catchment outlet.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...