Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 124
Filtrar
1.
Artigo em Inglês | MEDLINE | ID: mdl-38839369

RESUMO

Tardigrades are microscopic animals that are renowned for their capabilities of tolerating near-complete desiccation by entering an ametabolic state called anhydrobiosis. However, many species also show high tolerance against radiation in the active state as well, suggesting cross-tolerance via the anhydrobiosis mechanism. Previous studies utilized indirect DNA damaging agents to identify core components of the cross-tolerance machinery in species with high anhydrobiosis capacities. However, it was difficult to distinguish whether transcriptomic changes were specific to DNA damage or mutual with anhydrobiosis. To this end, we performed transcriptome analysis on bleomycin-exposed Hypsibius exemplaris. We observed induction of several tardigrade-specific gene families, including a previously identified novel anti-oxidative stress family, which may be a core component of the cross-tolerance mechanism. We also identified enrichment of the tryptophan metabolism pathway, for which metabolomic analysis suggested engagement of this pathway in stress tolerance. These results provide several candidates for the core component of cross-tolerance, as well as possible anhydrobiosis machinery.

2.
iScience ; 27(3): 109121, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38524370

RESUMO

Dysregulation of liver metabolism associated with obesity during feeding and fasting leads to the breakdown of metabolic homeostasis. However, the underlying mechanism remains unknown. Here, we measured multi-omics data in the liver of wild-type and leptin-deficient obese (ob/ob) mice at ad libitum feeding and constructed a differential regulatory trans-omic network of metabolic reactions. We compared the trans-omic network at feeding with that at 16 h fasting constructed in our previous study. Intermediate metabolites in glycolytic and nucleotide metabolism decreased in ob/ob mice at feeding but increased at fasting. Allosteric regulation reversely shifted between feeding and fasting, generally showing activation at feeding while inhibition at fasting in ob/ob mice. Transcriptional regulation was similar between feeding and fasting, generally showing inhibiting transcription factor regulations and activating enzyme protein regulations in ob/ob mice. The opposite metabolic dysregulation between feeding and fasting characterizes breakdown of metabolic homeostasis associated with obesity.

3.
Artigo em Inglês | MEDLINE | ID: mdl-38556356

RESUMO

BACKGROUND: The application of metabolomics-based profiles in environmental epidemiological studies is a promising approach to refine the process of health risk assessment. We aimed to identify potential metabolomics-based profiles in urine and plasma for the detection of relatively low-level cadmium (Cd) exposure in large population-based studies. METHOD: We analyzed 123 urinary metabolites and 94 plasma metabolites detected in fasting urine and plasma samples collected from 1,412 men and 2,022 women involved in the Tsuruoka Metabolomics Cohort Study. Regression analysis was performed for urinary N-acetyl-beta-D-glucosaminidase (NAG), plasma, and urinary metabolites as dependent variables, and urinary Cd (U-Cd, quartile) as an independent variable. The multivariable regression model included age, gender, systolic blood pressure, smoking, rice intake, BMI, glycated hemoglobin, low-density lipoprotein cholesterol, alcohol consumption, physical activity, educational history, dietary energy intake, urinary Na/K ratio, and uric acid. Pathway-network analysis was carried out to visualize the metabolite networks linked to Cd exposure. RESULT: Urinary NAG was positively associated with U-Cd, but not at lower concentrations (Q2). Among urinary metabolites in the total population, 45 metabolites showed associations with U-Cd in the unadjusted and adjusted models after adjusting for the multiplicity of comparison with FDR. There were 12 urinary metabolites which showed consistent associations between Cd exposure from Q2 to Q4. Among plasma metabolites, six cations and one anion were positively associated with U-Cd, whereas alanine, creatinine, and isoleucine were negatively associated with U-Cd. Our results were robust by statistical adjustment of various confounders. Pathway-network analysis revealed metabolites and upstream regulator changes associated with mitochondria (ACACB, UCP2, and metabolites related to the TCA cycle). CONCLUSION: These results suggested that U-Cd was associated with metabolites related to upstream mitochondrial dysfunction in a dose-dependent manner. Our data will help develop environmental Cd exposure profiles for human populations.


Assuntos
Cádmio , Exposição Ambiental , Masculino , Humanos , Feminino , Cádmio/urina , Estudos de Coortes , Exposição Ambiental/análise , Rim , Análise de Regressão , Biomarcadores/urina
4.
Cancer Sci ; 115(6): 1763-1777, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38527308

RESUMO

Overcoming resistance to immune checkpoint inhibitors is an important issue in patients with non-small-cell lung cancer (NSCLC). Transcriptome analysis shows that adenocarcinoma can be divided into three molecular subtypes: terminal respiratory unit (TRU), proximal proliferative (PP), and proximal inflammatory (PI), and squamous cell carcinoma (LUSQ) into four. However, the immunological characteristics of these subtypes are not fully understood. In this study, we investigated the immune landscape of NSCLC tissues in molecular subtypes using a multi-omics dataset, including tumor-infiltrating leukocytes (TILs) analyzed using flow cytometry, RNA sequences, whole exome sequences, metabolomic analysis, and clinicopathologic findings. In the PI subtype, the number of TILs increased and the immune response in the tumor microenvironment (TME) was activated, as indicated by high levels of tertiary lymphoid structures, and high cytotoxic marker levels. Patient prognosis was worse in the PP subtype than in other adenocarcinoma subtypes. Glucose transporter 1 (GLUT1) expression levels were upregulated and lactate accumulated in the TME of the PP subtype. This could lead to the formation of an immunosuppressive TME, including the inactivation of antigen-presenting cells. The TRU subtype had low biological malignancy and "cold" tumor-immune phenotypes. Squamous cell carcinoma (LUSQ) did not show distinct immunological characteristics in its respective subtypes. Elucidation of the immune characteristics of molecular subtypes could lead to the development of personalized immune therapy for lung cancer. Immune checkpoint inhibitors could be an effective treatment for the PI subtype. Glycolysis is a potential target for converting an immunosuppressive TME into an antitumorigenic TME in the PP subtype.


Assuntos
Adenocarcinoma de Pulmão , Transportador de Glucose Tipo 1 , Neoplasias Pulmonares , Linfócitos do Interstício Tumoral , Microambiente Tumoral , Humanos , Microambiente Tumoral/imunologia , Neoplasias Pulmonares/imunologia , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Adenocarcinoma de Pulmão/imunologia , Adenocarcinoma de Pulmão/patologia , Adenocarcinoma de Pulmão/genética , Linfócitos do Interstício Tumoral/imunologia , Linfócitos do Interstício Tumoral/metabolismo , Transportador de Glucose Tipo 1/genética , Transportador de Glucose Tipo 1/metabolismo , Carcinoma de Células Escamosas/imunologia , Carcinoma de Células Escamosas/genética , Carcinoma de Células Escamosas/patologia , Prognóstico , Carcinoma Pulmonar de Células não Pequenas/imunologia , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/patologia , Masculino , Feminino , Idoso , Regulação Neoplásica da Expressão Gênica , Pessoa de Meia-Idade , Perfilação da Expressão Gênica
5.
J Atheroscler Thromb ; 2024 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-38311416

RESUMO

AIMS: Nonalcoholic fatty liver disease (NAFLD) is known to be associated with atherosclerosis. This study focused on upstream changes in the process by which NAFLD leads to atherosclerosis. The study aimed to confirm the association between NAFLD and the cardio-ankle vascular index (CAVI), an indicator of subclinical atherosclerosis, and explore metabolites involved in both by assessing 94 plasma polar metabolites. METHODS: A total of 928 Japanese community-dwellers (306 men and 622 women) were included in this study. The association between NAFLD and CAVI was examined using a multivariable regression model adjusted for confounders. Metabolites commonly associated with NAFLD and CAVI were investigated using linear mixed-effects models in which batch numbers of metabolite measurements were used as a random-effects variable, and false discovery rate-adjusted p-values were calculated. To determine the extent to which these metabolites mediated the association between NAFLD and CAVI, mediation analysis was conducted. RESULTS: NAFLD was positively associated with CAVI (coefficients [95% Confidence intervals (CI)]=0.23 [0.09-0.37]; p=0.001). A total of 10 metabolites were involved in NAFLD and CAVI, namely, branched-chain amino acids (BCAAs; valine, leucine, and isoleucine), aromatic amino acids (AAAs; tyrosine and tryptophan), alanine, proline, glutamic acid, glycerophosphorylcholine, and 4-methyl-2-oxopentanoate. Mediation analysis showed that BCAAs mediated more than 20% of the total effect in the association between NAFLD and CAVI. CONCLUSIONS: NAFLD was associated with a marker of atherosclerosis, and several metabolites related to insulin resistance, including BCAAs and AAAs, could be involved in the process by which NAFLD leads to atherosclerosis.

6.
Gut Pathog ; 16(1): 8, 2024 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-38336806

RESUMO

BACKGROUND: The impact of the gut microbiota on neuropsychiatric disorders has gained much attention in recent years; however, comprehensive data on the relationship between the gut microbiome and its metabolites and resistance to treatment for depression and anxiety is lacking. Here, we investigated intestinal metabolites in patients with depression and anxiety disorders, and their possible roles in treatment resistance. RESULTS: We analyzed fecal metabolites and microbiomes in 34 participants with depression and anxiety disorders. Fecal samples were obtained three times for each participant during the treatment. Propensity score matching led us to analyze data from nine treatment responders and nine non-responders, and the results were validated in the residual sample sets. Using elastic net regression analysis, we identified several metabolites, including N-ε-acetyllysine; baseline levels of the former were low in responders (AUC = 0.86; 95% confidence interval, 0.69-1). In addition, fecal levels of N-ε-acetyllysine were negatively associated with the abundance of Odoribacter. N-ε-acetyllysine levels increased as symptoms improved with treatment. CONCLUSION: Fecal N-ε-acetyllysine levels before treatment may be a predictive biomarker of treatment-refractory depression and anxiety. Odoribacter may play a role in the homeostasis of intestinal L-lysine levels. More attention should be paid to the importance of L-lysine metabolism in those with depression and anxiety.

7.
J Epidemiol ; 2024 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-38191178

RESUMO

The Tsuruoka Metabolomics Cohort Study (TMCS) is an ongoing population-based cohort study being conducted in the rural area of Yamagata Prefecture, Japan. This study aimed to enhance the precision prevention of multi-factorial, complex diseases, including non-communicable and aging-associated diseases, by improving risk stratification and prediction measures. At baseline, 11,002 participants aged 35-74 years were recruited in Tsuruoka City, Yamagata Prefecture, Japan, between 2012 and 2015, with an ongoing follow-up survey. Participants underwent various measurements, examinations, tests, and questionnaires on their health, lifestyle, and social factors. This study used an integrative approach with deep molecular profiling to identify potential biomarkers linked to phenotypes that underpin disease pathophysiology and provide better mechanistic insights into social health determinants. The TMCS incorporates multi-omics data, including genetic and metabolomic analyses of 10,933 participants and comprehensive data collection ranging from physical, psychological, behavioral, and social to biological data. The metabolome is used as a phenotypic probe because it is sensitive to changes in physiological and external conditions. The TMCS focuses on collecting outcomes for cardiovascular disease, cancer incidence and mortality, disability, functional decline due to aging and disease sequelae, and the variation in health status within the body represented by omics analysis that lies between exposure and disease. It contains several sub-studies on aging, heated tobacco products, and women's health. This study is notable for its robust design, high participation rate (89%), and long-term repeated surveys. Moreover, it contributes to precision prevention in Japan and East Asia as a well-established multi-omics platform.

8.
Metabolites ; 14(1)2024 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-38276312

RESUMO

Studies examining long-term longitudinal metabolomic data and their reliability in large-scale populations are limited. Therefore, we aimed to evaluate the reliability of repeated measurements of plasma metabolites in a prospective cohort setting and to explore intra-individual concentration changes at three time points over a 6-year period. The study participants included 2999 individuals (1317 men and 1682 women) from the Tsuruoka Metabolomics Cohort Study, who participated in all three surveys-at baseline, 3 years, and 6 years. In each survey, 94 plasma metabolites were quantified for each individual and quality control (QC) sample. The coefficients of variation of QC, intraclass correlation coefficients, and change rates of QC were calculated for each metabolite, and their reliability was classified into three categories: excellent, fair to good, and poor. Seventy-six percent (71/94) of metabolites were classified as fair to good or better. Of the 39 metabolites grouped as excellent, 29 (74%) in men and 26 (67%) in women showed significant intra-individual changes over 6 years. Overall, our study demonstrated a high degree of reliability for repeated metabolome measurements. Many highly reliable metabolites showed significant changes over the 6-year period, suggesting that repeated longitudinal metabolome measurements are useful for epidemiological studies.

9.
J Epidemiol ; 2023 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-37926518

RESUMO

BACKGROUND: Heated tobacco products (HTPs) have gained global popularity, but their health risks remain unclear. Therefore, the current study aimed to identify plasma metabolites associated with smoking and HTP use in a large Japanese population to improve health risk assessment. METHODS: Metabolomics data from 9,922 baseline participants of the Tsuruoka Metabolomics Cohort Study (TMCS) were analyzed to determine the association between smoking habits and plasma metabolites. Moreover, alterations in smoking-related metabolites among HTP users were examined based on data obtained from 3,334 participants involved from April 2018 to June 2019 in a follow-up survey. RESULTS: Our study revealed that cigarette smokers had metabolomics profiles distinct from never smokers, with 22 polar metabolites identified as candidate biomarkers for smoking. These biomarker profiles of HTP users were closer to those of cigarette smokers than those of never smokers. The concentration of glutamate was higher in cigarette smokers, and biomarkers involved in glutamate metabolism were also associated with cigarette smoking and HTP use. Network pathway analysis showed that smoking was associated with the glutamate pathway, which could lead to endothelial dysfunction and atherosclerosis of the vessels. CONCLUSIONS: Our study showed that the glutamate pathway is affected by habitual smoking. These changes in the glutamate pathway may partly explain the mechanism by which cigarette smoking causes cardiovascular disease. HTP use was also associated with glutamate metabolism, indicating that HTP use may contribute to the development of cardiovascular disease through mechanisms similar to those in cigarette use.

10.
Oncogene ; 42(42): 3142-3156, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37658191

RESUMO

Growth regulation by estrogen in breast cancer 1 (GREB1) is involved in hormone-dependent and -independent tumor development (e.g., hepatoblastoma). In this study, we found that a GREB1 splicing variant, isoform 4 (Is4), which encodes C-terminal half of full-length GREB1, is specifically expressed via microphthalmia-associated transcription factor (MITF) in melanocytic melanoma, and that two MITF-binding E-box CANNTG motifs at the 5'-upstream region of GREB1 exon 19 are necessary for GREB1 Is4 transcription. MITF and GREB1 Is4 were strongly co-expressed in approximately 20% of the melanoma specimens evaluated (17/89 cases) and their expression was associated with tumor thickness. GREB1 Is4 silencing reduced melanoma cell proliferation in association with altered expression of cell proliferation-related genes in vitro. In addition, GREB1 Is4 targeting by antisense oligonucleotide (ASO) decreased melanoma xenograft tumor formation and GREB1 Is4 expression in a BRAFV600E; PTENflox melanoma mouse model promoted melanoma formation, demonstrating the crucial role of GREB1 Is4 for melanoma proliferation in vivo. GREB1 Is4 bound to CAD, the rate-limiting enzyme of pyrimidine metabolism, and metabolic flux analysis revealed that GREBI Is4 is necessary for pyrimidine synthesis. These results suggest that MITF-dependent GREB1 Is4 expression leads to melanoma proliferation and GREB1 Is4 represents a new molecular target in melanoma.


Assuntos
Melanoma , Fator de Transcrição Associado à Microftalmia , Animais , Camundongos , Humanos , Fator de Transcrição Associado à Microftalmia/genética , Fator de Transcrição Associado à Microftalmia/metabolismo , Linhagem Celular Tumoral , Melanoma/genética , Melanoma/metabolismo , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Proliferação de Células/genética , Pirimidinas , Regulação Neoplásica da Expressão Gênica , Proteínas de Neoplasias/genética
11.
Anal Bioanal Chem ; 415(27): 6689-6700, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37714971

RESUMO

Guanosine triphosphate (GTP) and adenosine triphosphate (ATP) are essential nucleic acid building blocks and serve as energy molecules for a wide range of cellular reactions. Cellular GTP concentration fluctuates independently of ATP and is significantly elevated in numerous cancers, contributing to malignancy. Quantitative measurement of ATP and GTP has become increasingly important to elucidate how concentration changes regulate cell function. Liquid chromatography-coupled mass spectrometry (LC-MS) and capillary electrophoresis-coupled MS (CE-MS) are powerful methods widely used for the identification and quantification of biological metabolites. However, these methods have limitations related to specialized instrumentation and expertise, low throughput, and high costs. Here, we introduce a novel quantitative method for GTP concentration monitoring (GTP-quenching resonance energy transfer (QRET)) in homogenous cellular extracts. CE-MS analysis along with pharmacological control of cellular GTP levels shows that GTP-QRET possesses high dynamic range and accuracy. Furthermore, we combined GTP-QRET with luciferase-based ATP detection, leading to a new technology, termed QT-LucGTP&ATP, enabling high-throughput compatible dual monitoring of cellular GTP and ATP in a homogenous fashion. Collectively, GTP-QRET and QT-LucGTP&ATP offer a unique, high-throughput opportunity to explore cellular energy metabolism, serving as a powerful platform for the development of novel therapeutics and extending its usability across a range of disciplines.


Assuntos
Trifosfato de Adenosina , Adenosina , Guanosina Trifosfato/química , Guanosina Trifosfato/metabolismo , Trifosfato de Adenosina/metabolismo , Guanosina , Cromatografia Líquida
12.
Am J Pathol ; 193(12): 1988-2000, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37741451

RESUMO

Dual-specificity phosphatase 6 (DUSP6) is a specific phosphatase for mitogen-activated protein kinase (MAPK). This study used a high-fat diet (HFD)-induced murine nonalcoholic fatty liver disease model to investigate the role of DUSP6 in this disease. Wild-type (WT) and Dusp6-haploinsufficiency mice developed severe obesity and liver pathology consistent with nonalcoholic fatty liver disease when exposed to HFD. In contrast, Dusp6-knockout (KO) mice completely eliminated these phenotypes. Furthermore, primary hepatocytes isolated from WT mice exposed to palmitic and oleic acids exhibited abundant intracellular lipid accumulation, whereas hepatocytes from Dusp6-KO mice showed minimal lipid accumulation. Transcriptome analysis revealed significant down-regulation of genes encoding cytochrome P450 4A (CYP4A), known to promote ω-hydroxylation of fatty acids and hepatic steatosis, in Dusp6-KO hepatocytes compared with that in WT hepatocytes. Diminished CYP4A expression was observed in the liver of Dusp6-KO mice compared with WT and Dusp6-haploinsufficiency mice. Knockdown of DUSP6 in HepG2, a human liver-lineage cell line, also promoted a reduction of lipid accumulation, down-regulation of CYP4A, and up-regulation of phosphorylated/activated MAPK. Furthermore, inhibition of MAPK activity promoted lipid accumulation in DUSP6-knockdown HepG2 cells without affecting CYP4A expression, indicating that CYP4A expression is independent of MAPK activation. These findings highlight the significant role of DUSP6 in HFD-induced steatohepatitis through two distinct pathways involving CYP4A and MAPK.


Assuntos
Hepatopatia Gordurosa não Alcoólica , Animais , Humanos , Camundongos , Citocromo P-450 CYP4A/metabolismo , Dieta Hiperlipídica , Ácidos Graxos/metabolismo , Hepatócitos/metabolismo , Fígado/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Hepatopatia Gordurosa não Alcoólica/patologia
13.
Elife ; 122023 07 18.
Artigo em Inglês | MEDLINE | ID: mdl-37461317

RESUMO

Mannose has anticancer activity that inhibits cell proliferation and enhances the efficacy of chemotherapy. How mannose exerts its anticancer activity, however, remains poorly understood. Here, using genetically engineered human cancer cells that permit the precise control of mannose metabolic flux, we demonstrate that the large influx of mannose exceeding its metabolic capacity induced metabolic remodeling, leading to the generation of slow-cycling cells with limited deoxyribonucleoside triphosphates (dNTPs). This metabolic remodeling impaired dormant origin firing required to rescue stalled forks by cisplatin, thus exacerbating replication stress. Importantly, pharmacological inhibition of de novo dNTP biosynthesis was sufficient to retard cell cycle progression, sensitize cells to cisplatin, and inhibit dormant origin firing, suggesting dNTP loss-induced genomic instability as a central mechanism for the anticancer activity of mannose.


In order to grow and divide, cells require a variety of sugars. Breaking down sugars provides energy for cells to proliferate and allows them to make more complex molecules, such as DNA. Although this principle also applies to cancer cells, a specific sugar called mannose not only inhibits cancer cell division but also makes them more sensitive to chemotherapy. These anticancer effects of mannose are particularly strong in cells lacking a protein known as MPI, which breaks down mannose. Evidence from honeybees suggests that a combination of mannose and low levels of MPI leads to a build-up of a modified form of mannose, called mannose-6-phosphate, within cells. As a result, pathways required to release energy from glucose become disrupted, proving lethal to these insects. However, it was not clear whether the same processes were responsible for the anticancer effects of mannose. To investigate, Harada et al. removed the gene that encodes the MPI protein in two types of human cancer cells. The experiments showed that mannose treatment was not lethal to these cells but overall slowed the cell cycle ­ a fundamental process for cell growth and division. More detailed biochemical experiments showed that cancer cells with excess mannose-6-phosphate could not produce the molecules required to make DNA. This prevented them from doubling their DNA ­ a necessary step for cell division ­ and responding to stress caused by chemotherapy. Harada et al. also noticed that cancer cells lacking MPI did not all react to mannose treatment in exactly the same way. Therefore, future work will address these diverse reactions, potentially providing an opportunity to use the mannose pathway to search for new cancer treatments.


Assuntos
Manose , Neoplasias , Humanos , Cisplatino , Instabilidade Genômica , Nucleotídeos , Replicação do DNA
14.
Nat Commun ; 14(1): 3863, 2023 06 30.
Artigo em Inglês | MEDLINE | ID: mdl-37391427

RESUMO

Fever is a common symptom of influenza and coronavirus disease 2019 (COVID-19), yet its physiological role in host resistance to viral infection remains less clear. Here, we demonstrate that exposure of mice to the high ambient temperature of 36 °C increases host resistance to viral pathogens including influenza virus and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). High heat-exposed mice increase basal body temperature over 38 °C to enable more bile acids production in a gut microbiota-dependent manner. The gut microbiota-derived deoxycholic acid (DCA) and its plasma membrane-bound receptor Takeda G-protein-coupled receptor 5 (TGR5) signaling increase host resistance to influenza virus infection by suppressing virus replication and neutrophil-dependent tissue damage. Furthermore, the DCA and its nuclear farnesoid X receptor (FXR) agonist protect Syrian hamsters from lethal SARS-CoV-2 infection. Moreover, we demonstrate that certain bile acids are reduced in the plasma of COVID-19 patients who develop moderate I/II disease compared with the minor severity of illness group. These findings implicate a mechanism by which virus-induced high fever increases host resistance to influenza virus and SARS-CoV-2 in a gut microbiota-dependent manner.


Assuntos
COVID-19 , Microbioma Gastrointestinal , Vírus da Influenza A , Influenza Humana , Cricetinae , Animais , Camundongos , Humanos , SARS-CoV-2 , Temperatura Corporal , Febre , Ácidos e Sais Biliares , Mesocricetus
15.
Cancer Res Commun ; 3(6): 1026-1040, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37377611

RESUMO

Resistance to immune checkpoint blockade remains challenging in patients with non-small cell lung cancer (NSCLC). Tumor-infiltrating leukocyte (TIL) quantity, composition, and activation status profoundly influence responsiveness to cancer immunotherapy. This study examined the immune landscape in the NSCLC tumor microenvironment by analyzing TIL profiles of 281 fresh resected NSCLC tissues. Unsupervised clustering based on numbers and percentages of 30 TIL types classified adenocarcinoma (LUAD) and squamous cell carcinoma (LUSQ) into the cold, myeloid cell-dominant, and CD8+ T cell-dominant subtypes. These were significantly correlated with patient prognosis; the myeloid cell subtype had worse outcomes than the others. Integrated genomic and transcriptomic analyses, including RNA sequencing, whole-exome sequencing, T-cell receptor repertoire, and metabolomics of tumor tissue, revealed that immune reaction-related signaling pathways were inactivated, while the glycolysis and K-ras signaling pathways activated in LUAD and LUSQ myeloid cell subtypes. Cases with ALK and ROS1 fusion genes were enriched in the LUAD myeloid subtype, and the frequency of TERT copy-number variations was higher in LUSQ myeloid subtype than in the others. These classifications of NSCLC based on TIL status may be useful for developing personalized immune therapies for NSCLC. Significance: The precise TIL profiling classified NSCLC into novel three immune subtypes that correlates with patient outcome, identifying subtype-specific molecular pathways and genomic alterations that should play important roles in constructing subtype-specific immune tumor microenvironments. These classifications of NSCLC based on TIL status are useful for developing personalized immune therapies for NSCLC.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Humanos , Carcinoma Pulmonar de Células não Pequenas/genética , Neoplasias Pulmonares/genética , Proteínas Tirosina Quinases/metabolismo , Linfócitos do Interstício Tumoral , Proteínas Proto-Oncogênicas/metabolismo , Transdução de Sinais/genética , Microambiente Tumoral/genética
16.
Metabolites ; 13(4)2023 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-37110217

RESUMO

High-throughput metabolomics has enabled the development of large-scale cohort studies. Long-term studies require multiple batch-based measurements, which require sophisticated quality control (QC) to eliminate unexpected bias to obtain biologically meaningful quantified metabolomic profiles. Liquid chromatography-mass spectrometry was used to analyze 10,833 samples in 279 batch measurements. The quantified profile included 147 lipids including acylcarnitine, fatty acids, glucosylceramide, lactosylceramide, lysophosphatidic acid, and progesterone. Each batch included 40 samples, and 5 QC samples were measured for 10 samples of each. The quantified data from the QC samples were used to normalize the quantified profiles of the sample data. The intra- and inter-batch median coefficients of variation (CV) among the 147 lipids were 44.3% and 20.8%, respectively. After normalization, the CV values decreased by 42.0% and 14.7%, respectively. The effect of this normalization on the subsequent analyses was also evaluated. The demonstrated analyses will contribute to obtaining unbiased, quantified data for large-scale metabolomics.

17.
Oncogene ; 42(16): 1294-1307, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36879117

RESUMO

Oncometabolites, such as D/L-2-hydroxyglutarate (2HG), have directly been implicated in carcinogenesis; however, the underlying molecular mechanisms remain poorly understood. Here, we showed that the levels of the L-enantiomer of 2HG (L2HG) were specifically increased in colorectal cancer (CRC) tissues and cell lines compared with the D-enantiomer of 2HG (D2HG). In addition, L2HG increased the expression of ATF4 and its target genes by activating the mTOR pathway, which subsequently provided amino acids and improved the survival of CRC cells under serum deprivation. Downregulating the expression of L-2-hydroxyglutarate dehydrogenase (L2HGDH) and oxoglutarate dehydrogenase (OGDH) increased L2HG levels in CRC, thereby activating mTOR-ATF4 signaling. Furthermore, L2HGDH overexpression reduced L2HG-mediated mTOR-ATF4 signaling under hypoxia, whereas L2HGDH knockdown promoted tumor growth and amino acid metabolism in vivo. Together, these results indicate that L2HG ameliorates nutritional stress by activating the mTOR-ATF4 axis and thus could be a potential therapeutic target for CRC.


Assuntos
Neoplasias Colorretais , Serina-Treonina Quinases TOR , Humanos , Serina-Treonina Quinases TOR/genética , Serina-Treonina Quinases TOR/metabolismo , Transdução de Sinais , Neoplasias Colorretais/patologia , Aminoácidos , Fator 4 Ativador da Transcrição/genética , Fator 4 Ativador da Transcrição/metabolismo , Oxirredutases do Álcool/metabolismo
18.
Sci Rep ; 13(1): 4758, 2023 03 23.
Artigo em Inglês | MEDLINE | ID: mdl-36959243

RESUMO

Interactions between various molecular species in biological phenomena give rise to numerous networks. The investigation of these networks, including their statistical and biochemical interactions, supports a deeper understanding of biological phenomena. The clustering of nodes associated with molecular species and enrichment analysis is frequently applied to examine the biological significance of such network structures. However, these methods focus on delineating the function of a node. As such, in-depth investigations of the edges, which are the connections between the nodes, are rarely explored. In the current study, we aimed to investigate the functions of the edges rather than the nodes. To accomplish this, for each network, we categorized the edges and defined the edge type based on their biological annotations. Subsequently, we used the edge type to compare the network structures of the metabolome and transcriptome in the livers of healthy (wild-type) and obese (ob/ob) mice following oral glucose administration (OGTT). The findings demonstrate that the edge type can facilitate the characterization of the state of a network structure, thereby reducing the information available through datasets containing the OGTT response in the metabolome and transcriptome.


Assuntos
Glucose , Metaboloma , Camundongos , Animais , Camundongos Obesos , Fígado
19.
Sci Adv ; 9(4): eadd2120, 2023 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-36696509

RESUMO

Although gut microbiota has been linked to exercise, whether alterations in the abundance of specific bacteria improve exercise performance remains ambiguous. In a cross-sectional study involving 25 male long-distance runners, we found a correlation between Bacteroides uniformis abundance in feces and the 3000-m race time. In addition, we administered flaxseed lignan or α-cyclodextrin as a test tablet to healthy, active males who regularly exercised in a randomized, double-blind, placebo-controlled study to increase B. uniformis in the gut (UMIN000033748). The results indicated that α-cyclodextrin supplementation improved human endurance exercise performance. Moreover, B. uniformis administration in mice increased swimming time to exhaustion, cecal short-chain fatty acid concentrations, and the gene expression of enzymes associated with gluconeogenesis in the liver while decreasing hepatic glycogen content. These findings indicate that B. uniformis enhances endurance exercise performance, which may be mediated by facilitating hepatic endogenous glucose production.


Assuntos
Microbioma Gastrointestinal , alfa-Ciclodextrinas , Humanos , Camundongos , Masculino , Animais , Estudos Transversais , Bacteroides/genética
20.
Prostate Cancer Prostatic Dis ; 26(2): 323-330, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-35418210

RESUMO

BACKGROUND: It is estimated that by 2040 there will be 1,017,712 new cases of prostate cancer worldwide. Androgen deprivation therapy (ADT) is widely used as a treatment option for all disease stages. ADT, and the resulting decline in androgen levels, may indirectly affect gut microbiota. Factors affecting gut microbiota are wide-ranging; however, literature is scarce on the effects of ADT on gut microbiota and metabolome profiles in patients with prostate cancer. METHODS: To study the changes of gut microbiome by ADT, this 24-week observational study investigated the relationship between testosterone levels and changes in gut microbiota in Japanese patients with prostate cancer undergoing ADT. Sequential faecal samples were collected 1 and 2 weeks before ADT, and 1, 4, 12, and 24 weeks after ADT. Blood samples were collected at almost the same times. Bacterial 16 S rRNA gene-based microbiome analyses and capillary electrophoresis-time-of-flight mass spectrometry-based metabolome analyses were performed. RESULTS: In total, 23 patients completed the study. The α- and ß-diversity of gut microbiota decreased significantly at 24 weeks after ADT (p = 0.017, p < 0.001, respectively). Relative abundances of Proteobacteria, Gammaproteobacteria, Pseudomonadales, Pseudomonas, and concentrations of urea, lactate, butyrate, 2-hydroxyisobutyrate and S-adenosylmethionine changed significantly after ADT (p < 0.05). There was a significant positive correlation between the abundance of Proteobacteria, a known indicator of dysbiosis, and the concentration of lactate (R = 0.49, p < 0.01). CONCLUSIONS: The decline in testosterone levels resulted in detrimental changes in gut microbiota. This dysbiosis may contribute to an increase in frailty and an increased risk of adverse outcomes in patients with prostate cancer.


Assuntos
Neoplasias da Próstata , Masculino , Humanos , Antagonistas de Androgênios/efeitos adversos , Androgênios , Disbiose/induzido quimicamente , Testosterona , Lactatos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...