Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
EJNMMI Radiopharm Chem ; 9(1): 48, 2024 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-38884866

RESUMO

BACKGROUND: Prostate cancer is a common cancer among men worldwide that has a very poor prognosis, especially when it progresses to metastatic castration-resistant prostate cancer (mCRPC). Therefore, novel therapeutic agents for mCRPC are urgently required. Because prostate-specific membrane antigen (PSMA) is overexpressed in mCRPC, targeted alpha therapy (TAT) for PSMA is a promising treatment for mCRPC. Astatine-211 (211At) is a versatile α-emitting radionuclide that can be produced using a cyclotron. Therefore, 211At-labeled PSMA compounds could be useful for TAT; however, 211At-labeled compounds are unstable against deastatination in vivo. In this study, to develop in vivo stable 211At-labeled PSMA derivatives, we designed and synthesized 211At-labeled PSMA derivatives using a neopentyl glycol (NpG) structure that can stably retain 211At in vivo. We also evaluated their biodistribution in normal and tumor-bearing mice. RESULTS: We designed and synthesized 211At-labeled PSMA derivatives containing two glutamic acid (Glu) linkers between the NpG structure and asymmetric urea (NpG-L-PSMA ((L-Glu)2 linker used) and NpG-D-PSMA ((D-Glu)2 linker used)). First, we evaluated the characteristics of 125I-labeled NpG derivatives because 125I was readily available. [125I]I-NpG-L-PSMA and [125I]I-NpG-D-PSMA showed low accumulation in the stomach and thyroid, indicating their high in vivo stability against deiodination. [125I]I-NpG-L-PSMA was excreted in urine as hydrophilic radiometabolites in addition to the intact form. Meanwhile, [125I]I-NpG-D-PSMA was excreted in urine in an intact form. In both cases, no radioactivity was observed in the free iodine fraction. [125I]I-NpG-D-PSMA showed higher tumor accumulation than [125I]I-NpG-L-PSMA. We then developed 211At-labeled PSMA using the NpG-D-PSMA structure. [211At]At-NpG-D-PSMA showed low accumulation in the stomach and thyroid in normal mice, indicating its high stability against deastatination in vivo. Moreover, [211At]At-NpG-D-PSMA showed high accumulation in tumor similar to that of [125I]I-NpG-D-PSMA. CONCLUSIONS: [211At]At-NpG-D-PSMA showed high in vivo stability against deastatination and high tumor accumulation. [211At]At-NpG-D-PSMA should be considered as a potential new TAT for mCRPC.

2.
Nucleic Acids Res ; 50(15): 8779-8806, 2022 08 26.
Artigo em Inglês | MEDLINE | ID: mdl-35902094

RESUMO

Recent in vitro reconstitution analyses have proven that the physical interaction between the exosome core and MTR4 helicase, which promotes the exosome activity, is maintained by either MPP6 or RRP6. However, knowledge regarding the function of MPP6 with respect to in vivo exosome activity remains scarce. Here, we demonstrate a facilitative function of MPP6 that composes a specific part of MTR4-dependent substrate decay by the human exosome. Using RNA polymerase II-transcribed poly(A)+ substrate accumulation as an indicator of a perturbed exosome, we found functional redundancy between RRP6 and MPP6 in the decay of these poly(A)+ transcripts. MTR4 binding to the exosome core via MPP6 was essential for MPP6 to exert its redundancy with RRP6. However, at least for the decay of our identified exosome substrates, MTR4 recruitment by MPP6 was not functionally equivalent to recruitment by RRP6. Genome-wide classification of substrates based on their sensitivity to each exosome component revealed that MPP6 deals with a specific range of substrates and highlights the importance of MTR4 for their decay. Considering recent findings of competitive binding to the exosome between auxiliary complexes, our results suggest that the MPP6-incorporated MTR4-exosome complex is one of the multiple alternative complexes rather than the prevailing one.


Assuntos
Exossomos , Proteínas de Membrana/metabolismo , Proteínas de Saccharomyces cerevisiae , Núcleo Celular/metabolismo , Complexo Multienzimático de Ribonucleases do Exossomo/metabolismo , Exossomos/metabolismo , Humanos , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...