Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Nanomaterials (Basel) ; 13(23)2023 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-38063738

RESUMO

A novel nanoporous adsorbent was obtained through the thermal treatment and chemical wash of the wasted crab shells (BC1) and characterized by various techniques. The structure of BC1 at the end of the treatments comprised a mixture of calcite and amorphous CaCO3, as evidenced by X-ray diffraction and Fourier transform infrared absorption. The BET surface area, BET pore volume, and pore diameter were 250.33 m2 g-1, 0.4 cm3 g-1, and <70 nm, respectively. The point of zero charge of BC1 was determined to be around pH 9. The prepared adsorbent was tested for its adsorption efficacy towards the neonicotinoid pesticide acetamiprid. The influence of pH (2-10), temperature (20-45 °C), adsorbent dose (0.2-1.2 g L-1), contact time (5-60 min), and initial pesticide concentration (10-60 mg L-1) on the adsorption process of acetamiprid on BC1 was studied. The adsorption capacity of BC1 was 17.8 mg g-1 under optimum conditions (i.e., 20 mg L-1 initial acetamiprid concentration, pH 8, 1 g L-1 adsorbent dose, 25 °C, and 15 min contact time). The equilibrium data obtained from the adsorption experiment fitted well with the Langmuir isotherm model. We developed an effective nanoporous adsorbent for the recycling of crab shells which can be applied on site with minimal laboratory infrastructure according to local needs.

2.
Nanomaterials (Basel) ; 13(8)2023 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-37110958

RESUMO

Here we report investigations of bulk and nano-sized Pr0.65Sr(0.35-x)CaxMnO3 compounds (x ≤ 0.3). Solid-state reaction was implemented for polycrystalline compounds and a modified sol-gel method was used for nanocrystalline compounds. X-ray diffraction disclosed diminishing cell volume with increasing Ca substitution in Pbnm space group for all samples. Optical microscopy was used for bulk surface morphology and transmission electron microscopy was utilized for nano-sized samples. Iodometric titration showed oxygen deficiency for bulk compounds and oxygen excess for nano-sized particles. Measurements of resistivity of bulk samples revealed features at temperatures associated with grain boundary condition and with ferromagnetic (FM)/paramagnetic (PM) transition. All samples exhibited negative magnetoresistivity. Magnetic critical behavior analysis suggested the polycrystalline samples are governed by a tricritical mean field model while nanocrystalline samples are governed by a mean field model. Curie temperatures values lower with increasing Ca substitution from 295 K for the parent compound to 201 K for x = 0.2. Bulk compounds exhibit high entropy change, with the highest value of 9.21 J/kgK for x = 0.2. Magnetocaloric effect and the possibility of tuning the Curie temperature by Ca substitution of Sr make the investigated bulk polycrystalline compounds promising for application in magnetic refrigeration. Nano-sized samples possess wider effective entropy change temperature (ΔTfwhm) and lower entropy changes of around 4 J/kgK which, however, puts in doubt their straightforward potential for applications as magnetocaloric materials.

3.
Materials (Basel) ; 15(21)2022 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-36363235

RESUMO

Here, we report synthesis and investigations of bulk and nano-sized La(0.7-x)EuxBa0.3MnO3 (x ≤ 0.4) compounds. The study presents a comparison between the structural and magnetic properties of the nano- and polycrystalline manganites La(0.7-x)EuxBa0.3MnO3, which are potential magnetocaloric materials to be used in domestic magnetic refrigeration close to room temperature. The parent compound, La0.7Ba0.3MnO3, has Curie temperature TC = 340 K. The magnetocaloric effect is at its maximum around TC. To reduce this temperature below 300 K, we partially replaced the La ions with Eu ions. A solid-state reaction was used to prepare bulk polycrystalline materials, and a sol-gel method was used for the nanoparticles. X-ray diffraction was used for the structural characterization of the compounds. Transmission electron spectroscopy (TEM) evidenced nanoparticle sizes in the range of 40-80 nm. Iodometry and inductively coupled plasma optical emission spectrometry (ICP-OES) was used to investigate the oxygen content of the studied compounds. Critical exponents were calculated for all samples, with bulk samples being governed by tricritical mean field model and nanocrystalline samples governed by the 3D Heisenberg model. The bulk sample with x = 0.05 shows room temperature phase transition TC = 297 K, which decreases with increasing x for the other samples. All nano-sized compounds show lower TC values compared to the same bulk samples. The magnetocaloric effect in bulk samples revealed a greater magnetic entropy change in a relatively narrow temperature range, while nanoparticles show lower values, but in a temperature range several times larger. The relative cooling power for bulk and nano-sized samples exhibit approximately equal values for the same substitution level, and this fact can substantially contribute to applications in magnetic refrigeration near room temperature. By combining the magnetic properties of the nano- and polycrystalline manganites, better magnetocaloric materials can be obtained.

4.
Nanomaterials (Basel) ; 12(6)2022 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-35335755

RESUMO

We report the successful synthesis and a complete magnetic characterization of CoFe2O4@SiO2@Au magnetoplasmonic nanoparticles. The CoFe2O4 magnetic nanoparticles were prepared using the hydrothermal method. A subsequent SiO2 shell followed by a plasmonic Au shell were deposited on the magnetic core creating magnetoplasmonic nanoparticles with a core-shell architecture. A spin-glass-type magnetism was shown at the surface of the CoFe2O4 nanograins. Depending on the external magnetic field, two types of spin-glass were identified and analyzed in correlation with the exchange field acting on octahedral and tetrahedral iron sites. The magnetization per formula unit of the CoFe2O4 core is not changed in the case of CoFe2O4@SiO2@Au nanocomposites. The gold nanoparticles creating the plasmonic shell show a giant diamagnetic susceptibility, dependent on their crystallite sizes.

5.
Nanomaterials (Basel) ; 13(1)2022 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-36616099

RESUMO

Co1−xZnxFe2O4 nanoparticles (0 ≤ x ≤ 1) have been synthesized via a green sol−gel combustion method. The prepared samples were studied using X-ray diffraction measurements (XRD), transmission electron microscopy (TEM), Raman, and magnetic measurements. All samples were found to be single phases and have a cubic Fd-3m structure. EDS analysis confirmed the presence of cobalt, zinc, iron, and oxygen in all studied samples. Raman spectra clearly show that Zn ions are preferentially located in T sites for low Zn concentrations. Due to their high crystallinity, the nanoparticles show high values of the magnetization, which increases with the Zn content for x < 0.5. The magnetic properties are discussed based on Raman results. Co ferrite doped with 30% of Zn produced the largest SAR values, which increase linearly from 148 to 840 W/gMNPs as the H is increased from 20 to 60 kA/m.

6.
ACS Omega ; 6(42): 27781-27790, 2021 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-34722978

RESUMO

The ever-growing demand for novel, cheaper, and more effective drugs has put nanomedicine and targeted drug delivery to the forefront of scientific innovation. Owing to its porous three-dimensional (3D)-nanostructure and properties, the biogenic calcite from wasted blue crab shells is employed in the present work as a new drug carrier for 5-fluorouracil (5-FU), a drug widely used in cancer therapy. The drug solution has been loaded in the porous nanoarchitecture of the powdered biogenic material and further pelleted in tablets with a 5-FU concentration of 1.748 mg/g. Their structural and morphological properties were characterized using Raman, X-ray diffraction, and scanning electron microscopy. Confocal micro-Raman spectra of tablet surface showed a typical signal of biogenic carbonate with preserved carotenoids and carotenoproteins found in the native waste shell, while the drug Raman signal was absent, indicating its adsorption in the intricate nanoporous biogenic carrier. The slow release of the drug from the newly formulated tablet was investigated by tracking the surface-enhanced Raman scattering (SERS) signal of the tablet solution in a series of time-dependent experiments. The SERS signal quantification is achieved using the well-known SERS spectral fingerprint of 5-fluorouracil aqueous solution adsorbed on Ag nanoparticles. The proof of concept is demonstrated by quantifying the slow release of the drug through the characteristic SERS band intensity of 5-FU in a time course of 26 h. This proof of concept boosted further investigations concerning the released drug identity in simulated solutions that mimic the pH of the upper- and lower gastrointestinal tract, as well as the multiple possibilities to control porosity and composition during powdering and treatment of biogenic material, to achieve the most convenient formulation for relevant biomedical drug delivery. Nonetheless, the present results showed great promise for innovative reusing waste biogenic 3D-nanomaterials of aquatic origin as advantageous drug carriers for slow release purposes, in line with the concept of blue bioeconomy.

7.
Materials (Basel) ; 14(16)2021 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-34443081

RESUMO

The compliance of crab shells traditionally used as a complex natural product for agricultural soil amendment with modern biofertilizers' quality and safety requirements was investigated. Shells waste from the Blue crab, Callinectes sapidus and the Green crab, Carcinus aestuarii were tested for macronutrients, heavy metals, bacteria content, and antimicrobial properties. Such information is crucial for further utilization of the biogenic powders for any composite formulation in added-value by-products. The calcium carbonate-rich hard tissue yield was 52.13% ± 0.015 (mean ± S.D.) and 64.71% ± 0.144 from the blue and green crabs, respectively. The contents of Pb, Ni, Zn, Cr (VI), and Cu were several orders of magnitude below the prescribed limit by EU biofertilizer legislation, with Fe, Mn (not prescribed), and As being the most abundant. The content of As and Cd from the material considered here was within limits. The shells contain no colony-forming units of Salmonella spp. and compliant levels of Escherichia coli; moreover, the shell micro-powder showed dose-dependent growth inhibition of Pseudomonas aeruginosa and Staphylococcus aureus. In summary, the waste crab shells present a complex natural product as plant biofertilizer following the circular economy concepts.

8.
Nanomaterials (Basel) ; 10(7)2020 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-32635399

RESUMO

Nanostructured alloy powders of SmCo5 + 10 wt% Fe obtained using recycled material were studied for the first time. The SmCo5 precursor was obtained from commercial magnets recycled by hydrogen decrepitation. The results were compared with identically processed samples obtained using virgin SmCo5 raw material. The samples were synthesized by dry high-energy ball-milling and subsequent heat treatment. Robust soft/hard exchange coupling was observed-with large coercivity, which is essential for commercial permanent magnets. The obtained energy products for the recycled material fall between 80% and 95% of those obtained when using virgin SmCo5, depending on milling and annealing times. These results further offer viability of recycling and sustainability in production. These powders and processes are therefore candidates for the next generation of specialized and nanostructured exchange-coupled bulk industrial magnets.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA