Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
bioRxiv ; 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-39005381

RESUMO

Metastasis, the leading cause of cancer-related deaths, involves a complex cascade of events, including extravasation. Despite extensive research into metastasis, the mechanisms underlying extravasation remain unclear. Molecular targeted therapies have advanced cancer treatment, yet their efficacy is limited, prompting exploration into novel therapeutic targets. Here, we showed the association of polyploidy in MDA-MB-231 breast cancer cells and their extravasation, using microfluidic systems to reproduce the in vivo microvascular environment. We observed enhanced extravasation in polyploid cells alongside upregulated expression of genes involved in cell-substrate adhesion and cell mechanical dynamics. These findings offer insights into the relationship between polyploidy and extravasation, highlighting potential targets for cancer therapy.

2.
Adv Sci (Weinh) ; 11(26): e2400921, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38696611

RESUMO

Endothelial programmed death-ligand 1 (PD-L1) expression is higher in tumors than in normal tissues. Also, tumoral vasculatures tend to be leakier than normal vessels leading to a higher trans-endothelial or transmural fluid flow. However, it is not clear whether such elevated transmural flow can control endothelial PD-L1 expression. Here, a new microfluidic device is developed to investigate the relationship between transmural flow and PD-L1 expression in microvascular networks (MVNs). After treating the MVNs with transmural flow for 24 h, the expression of PD-L1 in endothelial cells is upregulated. Additionally, CD8 T cell activation by phytohemagglutinin (PHA) is suppressed when cultured in the MVNs pre-conditioned with transmural flow. Moreover, transmural flow is able to further increase PD-L1 expression in the vessels formed in the tumor microenvironment. Finally, by utilizing blocking antibodies and knock-out assays, it is found that transmural flow-driven PD-L1 upregulation is controlled by integrin αVß3. Overall, this study provides a new biophysical explanation for high PD-L1 expression in tumoral vasculatures.


Assuntos
Antígeno B7-H1 , Microvasos , Regulação para Cima , Antígeno B7-H1/metabolismo , Antígeno B7-H1/genética , Humanos , Microvasos/metabolismo , Microambiente Tumoral , Camundongos , Animais , Células Endoteliais/metabolismo
3.
Sci Rep ; 14(1): 5164, 2024 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-38431674

RESUMO

Blood glucose levels fluctuate during daily life, and the oxygen concentration is low compared to the atmosphere. Vascular endothelial cells (ECs) maintain vascular homeostasis by sensing changes in glucose and oxygen concentrations, resulting in collective migration. However, the behaviors of ECs in response to high-glucose and hypoxic environments and the underlying mechanisms remain unclear. In this study, we investigated the collective migration of ECs simultaneously stimulated by changes in glucose and oxygen concentrations. Cell migration in EC monolayer formed inside the media channels of microfluidic devices was observed while varying the glucose and oxygen concentrations. The cell migration increased with increasing glucose concentration under normoxic condition but decreased under hypoxic condition, even in the presence of high glucose levels. In addition, inhibition of mitochondrial function reduced the cell migration regardless of glucose and oxygen concentrations. Thus, oxygen had a greater impact on cell migration than glucose, and aerobic energy production in mitochondria plays an important mechanistic role. These results provide new insights regarding vascular homeostasis relative to glucose and oxygen concentration changes.


Assuntos
Células Endoteliais , Glucose , Humanos , Células Endoteliais/fisiologia , Glucose/farmacologia , Hipóxia , Oxigênio , Movimento Celular , Hipóxia Celular , Células Cultivadas
4.
Front Cell Dev Biol ; 11: 1134011, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37397260

RESUMO

Spatial and temporal variations of oxygen environments affect the behaviors of various cells and are involved in physiological and pathological events. Our previous studies with Dictyostelium discoideum as a model of cell motility have demonstrated that aerotaxis toward an oxygen-rich region occurs below 2% O2. However, while the aerotaxis of Dictyostelium seems to be an effective strategy to search for what is essential for survival, the mechanism underlying this phenomenon is still largely unclear. One hypothesis is that an oxygen concentration gradient generates a secondary oxidative stress gradient that would direct cell migration towards higher oxygen concentration. Such mechanism was inferred but not fully demonstrated to explain the aerotaxis of human tumor cells. Here, we investigated the role on aerotaxis of flavohemoglobins, proteins that can both act as potential oxygen sensors and modulators of nitric oxide and oxidative stress. The migratory behaviors of Dictyostelium cells were observed under both self-generated and imposed oxygen gradients. Furthermore, their changes by chemicals generating or preventing oxidative stress were tested. The trajectories of the cells were then analyzed through time-lapse phase-contrast microscopic images. The results indicate that both oxidative and nitrosative stresses are not involved in the aerotaxis of Dictyostelium but cause cytotoxic effects that are enhanced upon hypoxia.

5.
Sci Rep ; 13(1): 5428, 2023 04 03.
Artigo em Inglês | MEDLINE | ID: mdl-37012295

RESUMO

Vascular endothelial cells (ECs) respond to mechanical stimuli caused by blood flow to maintain vascular homeostasis. Although the oxygen level in vascular microenvironment is lower than the atmospheric one, the cellular dynamics of ECs under hypoxic and flow exposure are not fully understood. Here, we describe a microfluidic platform for the reproduction hypoxic vascular microenvironments. Simultaneous application of hypoxic stress and fluid shear stress to the cultured cells was achieved by integrating a microfluidic device and a flow channel that adjusted the initial oxygen concentration in a cell culture medium. An EC monolayer was then formed on the media channel in the device, and the ECs were observed after exposure to hypoxic and flow conditions. The migration velocity of the ECs immediately increased after flow exposure, especially in the direction opposite to the flow direction, and gradually decreased, resulting in the lowest value under the hypoxic and flow exposure condition. The ECs after 6-h simultaneous exposure to hypoxic stress and fluid shear stress were generally aligned and elongated in the flow direction, with enhanced VE-cadherin expression and actin filament assembly. Thus, the developed microfluidic platform is useful for investigating the dynamics of ECs in vascular microenvironments.


Assuntos
Células Endoteliais , Microfluídica , Células Endoteliais/metabolismo , Células Cultivadas , Técnicas de Cultura de Células , Oxigênio/metabolismo , Estresse Mecânico , Endotélio Vascular/metabolismo
6.
Cell Adh Migr ; 15(1): 272-284, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34550057

RESUMO

The collective migration of vascular endothelial cells plays important roles in homeostasis and angiogenesis. Oxygen concentration in vivo, which is lower than in the atmosphere and changes due to diseases, is a key factor affecting the cellular dynamics of vascular endothelial cells. We previously reported that hypoxic conditions promote the internalization of vascular endothelial (VE)-cadherin, a specific cell-cell adhesion molecule, and increase the velocity of the collective migration of vascular endothelial cells. However, the mechanism through which cells regulate collective migration as affected by oxygen tension is not fully understood. Here, we investigated oxygen-dependent collective migration, focusing on intracellular protein p21-activated kinase (PAK) and hypoxia-inducing factor (HIF)-1α. A monolayer of human umbilical vein vascular endothelial cells (HUVECs) was formed in a microfluidic device with controllability of oxygen tension. The HUVECs were then exposed to various oxygen conditions in a range from 0.8% to 21% O2, with or without PAK inhibition or chemical stabilization of HIF-1α. Collective cell migration was measured by particle image velocimetry with time-lapse phase-contrast microscopic images. Localizations of VE-cadherin and HIF-1α were quantified by immunofluorescent staining. The collective migration of HUVECs varied in an oxygen-dependent fashion; the migration speed was increased by hypoxic exposure down to 1% O2, while it decreased under an extremely low oxygen tension of less than 1% O2. PAK inhibition suppressed the hypoxia-induced increase of the migration speed by preventing VE-cadherin internalization into HUVECs. A decrease in the migration speed was also obtained by chemical stabilization of HIF-1α, suggesting that excessive accumulation of HIF-1α diminishes collective cell migration. These results indicate that the oxygen-dependent variation of the migration speed of vascular endothelial cells is mediated by the regulation of VE-cadherin through the PAK pathway, as well as other mechanisms via HIF-1α, especially under extreme hypoxic conditions.


Assuntos
Neovascularização Patológica , Quinases Ativadas por p21 , Células Endoteliais da Veia Umbilical Humana , Humanos , Hipóxia , Oxigênio
7.
Elife ; 102021 08 20.
Artigo em Inglês | MEDLINE | ID: mdl-34415238

RESUMO

Using a self-generated hypoxic assay, we show that the amoeba Dictyostelium discoideum displays a remarkable collective aerotactic behavior. When a cell colony is covered, cells quickly consume the available oxygen (O2) and form a dense ring moving outwards at constant speed and density. To decipher this collective process, we combined two technological developments: porphyrin-based O2 -sensing films and microfluidic O2 gradient generators. We showed that Dictyostelium cells exhibit aerotactic and aerokinetic response in a low range of O2 concentration indicative of a very efficient detection mechanism. Cell behaviors under self-generated or imposed O2 gradients were modeled using an in silico cellular Potts model built on experimental observations. This computational model was complemented with a parsimonious 'Go or Grow' partial differential equation (PDE) model. In both models, we found that the collective migration of a dense ring can be explained by the interplay between cell division and the modulation of aerotaxis.


Assuntos
Quimiotaxia , Dictyostelium/fisiologia , Oxigênio/metabolismo , Anaerobiose
8.
J Bacteriol ; 193(20): 5817-23, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21856847

RESUMO

The mimABCD gene cluster encodes the binuclear iron monooxygenase that oxidizes propane and phenol in Mycobacterium smegmatis strain MC2 155 and Mycobacterium goodii strain 12523. Interestingly, expression of the mimABCD gene cluster is induced by acetone. In this study, we investigated the regulator gene responsible for this acetone-responsive expression. In the genome sequence of M. smegmatis strain MC2 155, the mimABCD gene cluster is preceded by a gene designated mimR, which is divergently transcribed. Sequence analysis revealed that MimR exhibits amino acid similarity with the NtrC family of transcriptional activators, including AcxR and AcoR, which are involved in acetone and acetoin metabolism, respectively. Unexpectedly, many homologs of the mimR gene were also found in the sequenced genomes of actinomycetes. A plasmid carrying a transcriptional fusion of the intergenic region between the mimR and mimA genes with a promoterless green fluorescent protein (GFP) gene was constructed and introduced into M. smegmatis strain MC2 155. Using a GFP reporter system, we confirmed by deletion and complementation analyses that the mimR gene product is the positive regulator of the mimABCD gene cluster expression that is responsive to acetone. M. goodii strain 12523 also utilized the same regulatory system as M. smegmatis strain MC2 155. Although transcriptional activators of the NtrC family generally control transcription using the σ(54) factor, a gene encoding the σ(54) factor was absent from the genome sequence of M. smegmatis strain MC2 155. These results suggest the presence of a novel regulatory system in actinomycetes, including mycobacteria.


Assuntos
Acetona/metabolismo , Proteínas de Bactérias/genética , Regulação Enzimológica da Expressão Gênica , Genes Reguladores , Oxigenases de Função Mista/genética , Família Multigênica , Mycobacterium smegmatis/genética , Sequência de Aminoácidos , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Sequência de Bases , Regulação Bacteriana da Expressão Gênica , Ferro/metabolismo , Oxigenases de Função Mista/metabolismo , Dados de Sequência Molecular , Mycobacterium/química , Mycobacterium/enzimologia , Mycobacterium/genética , Mycobacterium/metabolismo , Mycobacterium smegmatis/química , Mycobacterium smegmatis/enzimologia , Mycobacterium smegmatis/metabolismo , Alinhamento de Sequência
9.
Appl Environ Microbiol ; 77(4): 1214-20, 2011 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-21183637

RESUMO

Mycobacterium goodii strain 12523 is an actinomycete that is able to oxidize phenol regioselectively at the para position to produce hydroquinone. In this study, we investigated the genes responsible for this unique regioselective oxidation. On the basis of the fact that the oxidation activity of M. goodii strain 12523 toward phenol is induced in the presence of acetone, we first identified acetone-induced proteins in this microorganism by two-dimensional electrophoretic analysis. The N-terminal amino acid sequence of one of these acetone-induced proteins shares 100% identity with that of the protein encoded by the open reading frame Msmeg_1971 in Mycobacterium smegmatis strain mc(2)155, whose genome sequence has been determined. Since Msmeg_1971, Msmeg_1972, Msmeg_1973, and Msmeg_1974 constitute a putative binuclear iron monooxygenase gene cluster, we cloned this gene cluster of M. smegmatis strain mc(2)155 and its homologous gene cluster found in M. goodii strain 12523. Sequence analysis of these binuclear iron monooxygenase gene clusters revealed the presence of four genes designated mimABCD, which encode an oxygenase large subunit, a reductase, an oxygenase small subunit, and a coupling protein, respectively. When the mimA gene (Msmeg_1971) of M. smegmatis strain mc(2)155, which was also found to be able to oxidize phenol to hydroquinone, was deleted, this mutant lost the oxidation ability. This ability was restored by introduction of the mimA gene of M. smegmatis strain mc(2)155 or of M. goodii strain 12523 into this mutant. Interestingly, we found that these gene clusters also play essential roles in propane and acetone metabolism in these mycobacteria.


Assuntos
Hidroquinonas/metabolismo , Oxigenases de Função Mista/genética , Mycobacterium/enzimologia , Mycobacterium/genética , Fenol/metabolismo , Acetona/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Sequência de Bases , Regulação Bacteriana da Expressão Gênica , Genes Bacterianos , Hidroquinonas/química , Oxigenases de Função Mista/metabolismo , Dados de Sequência Molecular , Família Multigênica , Mycobacterium/metabolismo , Oxirredução , Fenol/química , Reação em Cadeia da Polimerase , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Deleção de Sequência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...