Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Cell Mol Gastroenterol Hepatol ; 18(5): 101389, 2024 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-39128653

RESUMO

BACKGROUND & AIMS: The apical-basal polarity of pancreatic acinar cells is essential for maintaining tissue architecture. However, the mechanisms by which polarity proteins regulate acinar pancreas injury and regeneration are poorly understood. METHODS: Cerulein-induced pancreatitis was induced in mice with conditional deletion of the polarity protein Par3 in the pancreas. The impact of Par3 loss on pancreas injury and regeneration was assessed by histologic analyses and transcriptional profiling by RNA sequencing. Mice were pretreated with the bromodomain and extraterminal domain (BET) inhibitor JQ1 before cotreatment with cerulein to determine the effect of BET inhibition on pancreas injury and regeneration. RESULTS: Initially, we show that Par3 is increased in acinar-ductal metaplasia (ADM) lesions present in human and mouse chronic pancreatitis specimens. Although Par3 loss disrupts tight junctions, Par3 is dispensable for pancreatogenesis. However, with aging, Par3 loss results in low-grade inflammation, acinar degeneration, and pancreatic lipomatosis. Par3 loss exacerbates acute pancreatitis-induced injury and chronic pancreatitis-induced acinar cell loss, promotes pancreatic lipomatosis, and prevents regeneration. Par3 loss also results in suppression of chronic pancreatitis-induced ADM and primary ciliogenesis. Notably, targeting BET proteins attenuates chronic pancreatitis-induced loss of primary cilia and promotes ADM in mice lacking pancreatic Par3. Targeting BET proteins also attenuates cerulein-induced acinar cell loss and enhances recovery of acinar cell mass and body weight of mice lacking pancreatic Par3. CONCLUSIONS: Combined, this study demonstrates how Par3 restrains chronic pancreatitis-induced changes in the pancreas and identifies a potential role for BET inhibitors to attenuate pancreas injury and facilitate regeneration.

2.
Genes Cells ; 29(7): 532-548, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38715205

RESUMO

Most cervical cancers are caused by human papillomavirus (HPV) infection. In HeLa cells, the HPV18 viral genome is integrated at chromosome 8q24.21 and activates transcription of the proto-oncogene c-Myc. However, the mechanism of how the integrated HPV genome and its transcribed RNAs exhibit transcription activation function has not been fully elucidated. In this study, we found that HPV18 transcripts contain an enhancer RNA-like function to activate proximal genes including CCAT1-5L and c-Myc. We showed that the human genome-integrated HPV18 genes are activated by transcription coregulators including BRD4 and Mediator. The transcribed HPV18 RNAs form a liquid-like condensate at chromosome 8q24.21 locus, which in turn accumulates RNA polymerase II. Moreover, we focused on a relatively uncharacterized transcript from the upstream region of CCAT1, named URC. The URC RNA is transcribed as a chimera RNA with HPV18 and is composed of the 3'-untranslated region of the HPV18 transcript. We experimentally showed that the URC contributes to stabilization of HPV18 RNAs by supplying a polyadenylation site for the HPV18 transcript. Our findings suggest that integrated HPV18 at 8q24.21 locus produces HPV18-URC chimera RNA and promotes tumorigenesis through RNA-based condensate formation.


Assuntos
Genoma Viral , Papillomavirus Humano 18 , Proto-Oncogene Mas , Humanos , Papillomavirus Humano 18/genética , Células HeLa , RNA Viral/genética , RNA Viral/metabolismo , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética , Infecções por Papillomavirus/virologia , Infecções por Papillomavirus/genética , Integração Viral , Transcrição Gênica , Feminino , Genoma Humano , Neoplasias do Colo do Útero/virologia , Neoplasias do Colo do Útero/genética , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Proteínas que Contêm Bromodomínio
3.
bioRxiv ; 2023 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-37745543

RESUMO

The apical-basal polarity of pancreatic acinar cells is essential for maintaining tissue architecture. However, the mechanisms by which polarity proteins regulate acinar pancreas tissue homeostasis are poorly understood. Here, we evaluate the role of Par3 in acinar pancreas injury and homeostasis. While Par3 loss in the mouse pancreas disrupts tight junctions, Par3 loss is dispensable for pancreatogenesis. However, with aging, Par3 loss results in low-grade inflammation, acinar degeneration, and pancreatic lipomatosis. Par3 loss also exacerbates pancreatitis-induced acinar cell loss, resulting in pronounced pancreatic lipomatosis and failure to regenerate. Moreover, Par3 loss in mice harboring mutant Kras causes extensive pancreatic intraepithelial neoplastic (PanIN) lesions and large pancreatic cysts. We also show that Par3 loss restricts injury-induced primary ciliogenesis. Significantly, targeting BET proteins enhances primary ciliogenesis during pancreatitis-induced injury and, in mice with Par3 loss, limits pancreatitis-induced acinar loss and facilitates acinar cell regeneration. Combined, this study demonstrates how Par3 restrains pancreatitis- and Kras-induced changes in the pancreas and identifies a potential role for BET inhibitors to attenuate pancreas injury and facilitate pancreas tissue regeneration.

4.
Development ; 149(21)2022 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-36218069

RESUMO

During brain development, neural precursor cells (NPCs) expand initially, and then switch to generating stage-specific neurons while maintaining self-renewal ability. Because the NPC pool at the onset of neurogenesis crucially affects the final number of each type of neuron, tight regulation is necessary for the transitional timing from the expansion to the neurogenic phase in these cells. However, the molecular mechanisms underlying this transition are poorly understood. Here, we report that the telencephalon-specific loss of PAR3 before the start of neurogenesis leads to increased NPC proliferation at the expense of neurogenesis, resulting in disorganized tissue architecture. These NPCs demonstrate hyperactivation of hedgehog signaling in a smoothened-dependent manner, as well as defects in primary cilia. Furthermore, loss of PAR3 enhanced ligand-independent ciliary accumulation of smoothened and an inhibitor of smoothened ameliorated the hyperproliferation of NPCs in the telencephalon. Thus, these findings support the idea that PAR3 has a crucial role in the transition of NPCs from the expansion phase to the neurogenic phase by restricting hedgehog signaling through the establishment of ciliary integrity.


Assuntos
Proteínas Hedgehog , Células-Tronco Neurais , Células-Tronco Neurais/fisiologia , Neurônios , Neurogênese , Transdução de Sinais/fisiologia
5.
Nutrients ; 14(18)2022 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-36145208

RESUMO

Binge eating is a characteristic symptom observed in obese individuals that is related to dysfunction of dopaminergic neurons (DNs). Intermittent administration of a high-fat diet (HFD) is reported to induce binge-like eating, but the underlying mechanisms remain unclear. We generated dopaminergic neuron specific IKKß deficient mice (KO) to examine the effects of inflammation in DNs on binge-like eating under inflammatory conditions associated with HFD. After administration of HFD for 4 weeks, mice were fasted for 24 h, and then the consumption of HFD was measured for 2 h. We also evaluated that the mRNA expressions of inflammatory cytokines, glial markers, and dopamine signaling-related genes in the ventral tegmental area (VTA) and striatum. Moreover, insulin was administered intraventricularly to assess downstream signaling. The consumption of HFD was significantly reduced, and the phosphorylation of AKT in the VTA was significantly increased in female KO compared to wild-type (WT) mice. Analyses of mRNA expressions revealed that DNs activity and inflammation in the VTA were significantly decreased in female KO mice. Thus, our data suggest that HFD-induced inflammation with glial cell activation in the VTA affects DNs function and causes abnormal eating behaviors accompanied by insulin resistance in the VTA of female mice.


Assuntos
Transtorno da Compulsão Alimentar , Insulinas , Animais , Transtorno da Compulsão Alimentar/metabolismo , Citocinas/metabolismo , Dieta Hiperlipídica , Dopamina/metabolismo , Neurônios Dopaminérgicos/metabolismo , Feminino , Quinase I-kappa B/metabolismo , Inflamação/metabolismo , Insulinas/metabolismo , Insulinas/farmacologia , Camundongos , Proteínas Proto-Oncogênicas c-akt/metabolismo , RNA Mensageiro/metabolismo , Área Tegmentar Ventral/metabolismo
6.
Nat Commun ; 13(1): 2905, 2022 05 25.
Artigo em Inglês | MEDLINE | ID: mdl-35614107

RESUMO

Non-polyadenylated mRNAs of replication-dependent histones (RDHs) are synthesized by RNA polymerase II (Pol II) at histone locus bodies (HLBs). HLBs frequently associate with Cajal bodies (CBs), in which 3'-end processing factors for RDH genes are enriched; however, this association's role in transcription termination of RDH genes remains unclear. Here, we show that Pol II pauses immediately upstream of transcript end sites of RDH genes and Mediator plays a role in this Pol II pausing through CBs' association with HLBs. Disruption of the Mediator docking site for Little elongation complex (LEC)-Cap binding complex (CBC)-Negative elongation factor (NELF), components of CBs, interferes with CBs' association with HLBs and 3' Pol II pausing, resulting in increased aberrant unprocessed RDH gene transcripts. Our findings suggest Mediator's involvement in CBs' association with HLBs to facilitate 3' Pol II pausing and subsequent 3'-end processing of RDH genes by supplying 3'-end processing factors.


Assuntos
Corpos Enovelados , Histonas , Corpos Enovelados/metabolismo , Histonas/metabolismo , Corpos Nucleares , RNA Polimerase II/metabolismo , Transcrição Gênica
7.
Lab Invest ; 102(6): 581-588, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35145203

RESUMO

Vertebrates exhibit patterned epidermis, exemplified by scales/interscales in mice tails and grooves/ridges on the human skin surface (microtopography). Although the role of spatiotemporal regulation of stem cells (SCs) has been implicated in this process, the mechanism underlying the development of such epidermal patterns is poorly understood. Here, we show that collagen XVII (COL17), a niche for epidermal SCs, helps stabilize epidermal patterns. Gene knockout and rescue experiments revealed that COL17 maintains the width of the murine tail scale epidermis independently of epidermal cell polarity. Skin regeneration after wounding was associated with slender scale epidermis, which was alleviated by overexpression of human COL17. COL17-negative skin in human junctional epidermolysis bullosa showed a distinct epidermal pattern from COL17-positive skin that resulted from revertant mosaicism. These results demonstrate that COL17 contributes to defining mouse tail scale shapes and human skin microtopography. Our study sheds light on the role of the SC niche in tissue pattern formation.


Assuntos
Autoantígenos , Epiderme , Colágenos não Fibrilares , Animais , Autoantígenos/genética , Epiderme/crescimento & desenvolvimento , Camundongos , Colágenos não Fibrilares/deficiência , Colágenos não Fibrilares/genética , Pele , Colágeno Tipo XVII
8.
Sci Rep ; 11(1): 19296, 2021 09 29.
Artigo em Inglês | MEDLINE | ID: mdl-34588513

RESUMO

Previous studies suggest that signaling by the gamma-aminobutyric acid (GABA) type B receptor (GABABR) is involved in the regulation of binge eating, a disorder which might contribute to the development of obesity. Here, we show that intermittent access to a high fat diet (HFD) induced binge-like eating behavior with activation of dopamine receptor d1 (drd1)-expressing neurons in the caudate putamen (CPu) and nucleus accumbens (NAc) in wild-type (WT) mice. The activation of drd1-expressing neurons during binge-like eating was substantially increased in the CPu, but not in the NAc, in corticostriatal neuron-specific GABABR-deficient knockout (KO) mice compared to WT mice. Treatment with the GABABR agonist, baclofen, suppressed binge-like eating behavior in WT mice, but not in KO mice, as reported previously. Baclofen also suppressed the activation of drd1-expressing neurons in the CPu, but not in the NAc, during binge-like eating in WT mice. Thus, our data suggest that GABABR signaling in CPu neurons expressing drd1 suppresses binge-like consumption during a HFD in mice.


Assuntos
Bulimia/fisiopatologia , Obesidade/fisiopatologia , Putamen/fisiopatologia , Receptores de GABA-B/metabolismo , Animais , Baclofeno/administração & dosagem , Bulimia/tratamento farmacológico , Bulimia/genética , Bulimia/patologia , Dieta Hiperlipídica/efeitos adversos , Modelos Animais de Doenças , Neurônios Dopaminérgicos/metabolismo , Feminino , Agonistas dos Receptores de GABA-B/administração & dosagem , Humanos , Masculino , Camundongos , Camundongos Knockout , Camundongos Transgênicos , Núcleo Accumbens/citologia , Núcleo Accumbens/metabolismo , Núcleo Accumbens/patologia , Obesidade/etiologia , Obesidade/prevenção & controle , Putamen/citologia , Putamen/metabolismo , Putamen/patologia , Receptores de Dopamina D1/metabolismo , Receptores Acoplados a Proteínas G/genética , Receptores de GABA-B/genética , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética
9.
Sci Adv ; 7(13)2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33762331

RESUMO

Polymicrogyria is a common malformation of cortical development whose etiology remains elusive. We conducted whole-exome sequencing for 124 patients with polymicrogyria and identified de novo ATP1A3 variants in eight patients. Mutated ATP1A3 causes functional brain diseases, including alternating hemiplegia of childhood (AHC), rapid-onset dystonia parkinsonism (RDP), and cerebellar ataxia, areflexia, pes cavus, optic nerve atrophy, and sensorineural deafness (CAPOS). However, our patients showed no clinical features of AHC, RDP, or CAPOS and had a completely different phenotype: a severe form of polymicrogyria with epilepsy and developmental delay. Detected variants had different locations in ATP1A3 and different functional properties compared with AHC-, RDP-, or CAPOS-associated variants. In the developing cerebral cortex of mice, radial neuronal migration was impaired in neurons overexpressing the ATP1A3 variant of the most severe patients, suggesting that this variant is involved in cortical malformation pathogenesis. We propose a previously unidentified category of polymicrogyria associated with ATP1A3 abnormalities.

10.
PLoS One ; 16(3): e0248065, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33730054

RESUMO

Excessive sodium salt (NaCl) or fat intake is associated with a variety of increased health risks. However, whether excessive NaCl intake accompanied by a high-fat diet (HFD) affects glucose metabolism has not been elucidated. In this study, C57BL/6J male mice were fed a normal chow diet (NCD), a NCD plus high-NaCl diet (NCD plus NaCl), a HFD, or a HFD plus high-NaCl diet (HFD plus NaCl) for 30 weeks. No significant differences in body weight gain, insulin sensitivity, and glucose tolerance were observed between NCD-fed and NCD plus NaCl-fed mice. In contrast, body and liver weights were decreased, but the weight of epididymal white adipose tissue was increased in HFD plus NaCl-fed compared to HFD-fed mice. HFD plus NaCl-fed mice had lower plasma glucose levels in an insulin tolerance test, and showed higher plasma glucose and lower plasma insulin levels in an intraperitoneal glucose tolerance test compared to HFD-fed mice. The ß-cell area and number of islets were decreased in HFD plus NaCl-fed compared to HFD-fed mice. Increased Ki67-positive ß-cells, and increased expression levels of Ki67, CyclinB1, and CyclinD1 mRNA in islets were observed in HFD-fed but not HFD plus NaCl-fed mice when compared to NCD-fed mice. Our data suggest that excessive NaCl intake accompanied by a HFD exacerbates glucose intolerance, with impairment in insulin secretion caused by the attenuation of expansion of ß-cell mass in the pancreas.


Assuntos
Dieta Hiperlipídica , Intolerância à Glucose/metabolismo , Resistência à Insulina/fisiologia , Secreção de Insulina/fisiologia , Células Secretoras de Insulina/metabolismo , Cloreto de Sódio na Dieta , Tecido Adiposo Branco/metabolismo , Animais , Glicemia/metabolismo , Metabolismo Energético/fisiologia , Teste de Tolerância a Glucose , Insulina/sangue , Masculino , Camundongos
11.
Exp Dermatol ; 30(1): 62-67, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-32970880

RESUMO

Type XVII collagen (COL17) is a transmembrane protein expressed in the basal epidermis. COL17 serves as a niche for epidermal stem cells, and although its reduction has been implicated in altering cell polarity and ageing of the epidermis, it is unknown how COL17 affects epidermal cell polarity. Here, we uncovered COL17 as a binding partner of the aPKC-PAR complex, which is a key regulating factor of cell polarity. Immunoprecipitation-immunoblot assay and protein-protein binding assay revealed that COL17 interacts with aPKC and PAR3. COL17 deficiency or epidermis-specific aPKCλ deletion destabilized PAR3 distribution in the epidermis, while aPKCζ knockout did not. Asymmetrical cell division was pronounced in COL17-null neonatal paw epidermis. These results show that COL17 is pivotal for maintaining epidermal cell polarity. Our study highlights the previously unrecognized role of COL17 in the basal keratinocytes.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Autoantígenos/metabolismo , Proteínas de Ciclo Celular/metabolismo , Polaridade Celular , Epiderme/metabolismo , Colágenos não Fibrilares/metabolismo , Proteína Quinase C/metabolismo , Animais , Autoantígenos/genética , Células HEK293 , Humanos , Camundongos , Camundongos Knockout , Colágenos não Fibrilares/genética , Isoformas de Proteínas/metabolismo , Colágeno Tipo XVII
12.
J Cell Sci ; 133(22)2020 11 30.
Artigo em Inglês | MEDLINE | ID: mdl-33093242

RESUMO

Cell polarity is essential for various asymmetric cellular events, and the partitioning defective (PAR) protein PAR3 (encoded by PARD3 in mammals) plays a unique role as a cellular landmark to establish polarity. In epithelial cells, PAR3 localizes at the subapical border, such as the tight junction in vertebrates, and functions as an apical determinant. Although we know a great deal about the regulators of PAR3 localization, how PAR3 is concentrated and localized to a specific membrane domain remains an important question to be clarified. In this study, we demonstrate that ASPP2 (also known as TP53BP2), which controls PAR3 localization, links PAR3 and protein phosphatase 1 (PP1). The ASPP2-PP1 complex dephosphorylates a novel phosphorylation site, Ser852, of PAR3. Furthermore, Ser852- or Ser889-unphosphorylatable PAR3 mutants form protein clusters, and ectopically localize to the lateral membrane. Concomitance of clustering and ectopic localization suggests that PAR3 localization is a consequence of local clustering. We also demonstrate that unphosphorylatable forms of PAR3 exhibited a low molecular turnover and failed to coordinate rapid reconstruction of the tight junction, supporting that both the phosphorylated and dephosphorylated states are essential for the functional integrity of PAR3.


Assuntos
Polaridade Celular , Proteína Quinase C , Animais , Proteínas de Ciclo Celular/metabolismo , Análise por Conglomerados , Fosforilação , Proteína Quinase C/metabolismo , Junções Íntimas/metabolismo
13.
Nat Commun ; 11(1): 4586, 2020 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-32934222

RESUMO

Frequent mutation of the tumour suppressor RNF43 is observed in many cancers, particularly colon malignancies. RNF43, an E3 ubiquitin ligase, negatively regulates Wnt signalling by inducing degradation of the Wnt receptor Frizzled. In this study, we discover that RNF43 activity requires phosphorylation at a triplet of conserved serines. This phospho-regulation of RNF43 is required for zebrafish development and growth of mouse intestinal organoids. Cancer-associated mutations that abrogate RNF43 phosphorylation cooperate with active Ras to promote tumorigenesis by abolishing the inhibitory function of RNF43 in Wnt signalling while maintaining its inhibitory function in p53 signalling. Our data suggest that RNF43 mutations cooperate with KRAS mutations to promote multi-step tumorigenesis via the Wnt-Ras-p53 axis in human colon cancers. Lastly, phosphomimetic substitutions of the serine trio restored the tumour suppressive activity of extracellular oncogenic mutants. Therefore, harnessing phospho-regulation of RNF43 might be a potential therapeutic strategy for tumours with RNF43 mutations.


Assuntos
Carcinogênese/metabolismo , Receptores Wnt/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Animais , Carcinogênese/genética , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Proteína Oncogênica p21(ras)/genética , Proteína Oncogênica p21(ras)/metabolismo , Fosforilação , Proteólise , Receptores Wnt/genética , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo , Ubiquitina-Proteína Ligases/genética , Via de Sinalização Wnt
14.
Nat Commun ; 11(1): 1063, 2020 02 26.
Artigo em Inglês | MEDLINE | ID: mdl-32102997

RESUMO

Mediator is a coregulatory complex that regulates transcription of Pol II-dependent genes. Previously, we showed that human Mediator subunit MED26 plays a role in the recruitment of Super Elongation Complex (SEC) or Little Elongation Complex (LEC) to regulate the expression of certain genes. MED26 plays a role in recruiting SEC to protein-coding genes including c-myc and LEC to small nuclear RNA (snRNA) genes. However, how MED26 engages SEC or LEC to regulate distinct genes is unclear. Here, we provide evidence that MED26 recruits LEC to modulate transcription termination of non-polyadenylated transcripts including snRNAs and mRNAs encoding replication-dependent histone (RDH) at Cajal bodies. Our findings indicate that LEC recruited by MED26 promotes efficient transcription termination by Pol II through interaction with CBC-ARS2 and NELF/DSIF, and promotes 3' end processing by enhancing recruitment of Integrator or Heat Labile Factor to snRNA or RDH genes, respectively.


Assuntos
Regulação da Expressão Gênica/genética , Complexo Mediador/genética , RNA Nuclear Pequeno/genética , Terminação da Transcrição Genética/fisiologia , Fatores de Elongação da Transcrição/genética , Linhagem Celular Tumoral , Células HCT116 , Células HEK293 , Células HeLa , Humanos , Proteínas Nucleares/metabolismo , Proteínas de Ligação ao Cap de RNA/metabolismo , RNA Polimerase II/metabolismo , Fatores de Transcrição/metabolismo , Fatores de Elongação da Transcrição/metabolismo
15.
Am J Hum Genet ; 106(1): 13-25, 2020 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-31839203

RESUMO

MN1 was originally identified as a tumor-suppressor gene. Knockout mouse studies have suggested that Mn1 is associated with craniofacial development. However, no MN1-related phenotypes have been established in humans. Here, we report on three individuals who have de novo MN1 variants that lead to a protein lacking the carboxyl (C) terminus and who presented with severe developmental delay, craniofacial abnormalities with specific facial features, and structural abnormalities in the brain. An in vitro study revealed that the deletion of the C-terminal region led to increased protein stability, an inhibitory effect on cell proliferation, and enhanced MN1 aggregation in nuclei compared to what occurred in the wild type, suggesting that a gain-of-function mechanism is involved in this disease. Considering that C-terminal deletion increases the fraction of intrinsically disordered regions of MN1, it is possible that altered phase separation could be involved in the mechanism underlying the disease. Our data indicate that MN1 participates in transcriptional regulation of target genes through interaction with the transcription factors PBX1, PKNOX1, and ZBTB24 and that mutant MN1 impairs the binding with ZBTB24 and RING1, which is an E3 ubiquitin ligase. On the basis of our findings, we propose the model that C-terminal deletion interferes with MN1's interaction molecules related to the ubiquitin-mediated proteasome pathway, including RING1, and increases the amount of the mutant protein; this increase leads to the dysregulation of MN1 target genes by inhibiting rapid MN1 protein turnover.


Assuntos
Encefalopatias/etiologia , Anormalidades Craniofaciais/etiologia , Mutação com Ganho de Função , Regulação da Expressão Gênica , Deleção de Sequência , Transativadores/genética , Proteínas Supressoras de Tumor/genética , Adolescente , Encefalopatias/patologia , Proliferação de Células , Criança , Pré-Escolar , Anormalidades Craniofaciais/patologia , Feminino , Células HeLa , Humanos , Masculino , Proteólise , Síndrome , Transativadores/metabolismo , Transcriptoma , Proteínas Supressoras de Tumor/metabolismo
16.
J Dermatol Sci ; 93(2): 101-108, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30660448

RESUMO

BACKGROUND: The epidermis possesses regenerative properties that become apparent only after wounding. Atypical protein kinase C (aPKC) isoforms aPKCζ and aPKCλ form a ternary complex with Par3 and Par6, and play crucial roles in establishing and maintaining epithelial cell polarity. The epidermal loss of aPKCλ results in progressive depletion of hair follicle stem cells. However, it is unclear whether aPKCs have equivalent activities in epidermal regeneration. OBJECTIVES: To clarify functional differences between aPKCζ and aPKCλ in cutaneous wound healing. METHODS: We compared cutaneous wound healing processes in vivo using mutant mice with genetic deletion of each aPKC isoform. We also analyzed functional differences between aPKCζ and aPKCλ in cell proliferation, directional cell migration, and formation of microtubules in vitro using primary keratinocytes established from each mutant mouse. RESULTS: Wound healing was significantly retarded in epidermis-specific aPKCλ knockout mice. In aPKCλ-deleted keratinocytes, the correct orientation of cell protrusions toward the wound was disrupted through the destabilization of Par6ß. The elongation of stabilized ß-tubulin was also deteriorated in aPKCλ-deleted keratinocytes, leading to defects in cell spreading. Conversely, wound healing and directional cell migration in aPKCζ-deleted mice were comparable to those in their control littermates. CONCLUSIONS: aPKCs are not functionally equivalent; aPKCλ, but not aPKCζ, plays a primary role in cutaneous wound healing.


Assuntos
Movimento Celular/fisiologia , Epiderme/lesões , Isoenzimas/fisiologia , Proteína Quinase C/fisiologia , Cicatrização/fisiologia , Animais , Polaridade Celular/fisiologia , Células Cultivadas , Epiderme/fisiologia , Queratinócitos/fisiologia , Camundongos , Camundongos Knockout , Modelos Animais , Cultura Primária de Células
17.
Nat Commun ; 9(1): 5357, 2018 12 17.
Artigo em Inglês | MEDLINE | ID: mdl-30559384

RESUMO

Strict regulation of proliferation is vital for development, whereas unregulated cell proliferation is a fundamental characteristic of cancer. The polarity protein atypical protein kinase C lambda/iota (aPKCλ) is associated with cell proliferation through unknown mechanisms. In endothelial cells, suppression of aPKCλ impairs proliferation despite hyperactivated mitogenic signaling. Here we show that aPKCλ phosphorylates the DNA binding domain of forkhead box O1 (FoxO1) transcription factor, a gatekeeper of endothelial growth. Although mitogenic signaling excludes FoxO1 from the nucleus, consequently increasing c-Myc abundance and proliferation, aPKCλ controls c-Myc expression via FoxO1/miR-34c signaling without affecting its localization. We find this pathway is strongly activated in the malignant vascular sarcoma, angiosarcoma, and aPKC inhibition reduces c-Myc expression and proliferation of angiosarcoma cells. Moreover, FoxO1 phosphorylation at Ser218 and aPKC expression correlates with poor patient prognosis. Our findings may provide a potential therapeutic strategy for treatment of malignant cancers, like angiosarcoma.


Assuntos
Proliferação de Células/fisiologia , Células Endoteliais/metabolismo , Proteína Forkhead Box O1/metabolismo , Hemangiossarcoma/patologia , Isoenzimas/metabolismo , Proteína Quinase C/metabolismo , Animais , Linhagem Celular , Proteínas de Ligação a DNA/metabolismo , Proteína Forkhead Box O1/genética , Regulação da Expressão Gênica , Células HEK293 , Hemangiossarcoma/genética , Células Endoteliais da Veia Umbilical Humana , Humanos , Isoenzimas/genética , Camundongos , Camundongos Knockout , MicroRNAs/genética , Fosforilação , Proteína Quinase C/genética , Proteínas Proto-Oncogênicas c-myc/genética , Proteínas Proto-Oncogênicas c-myc/metabolismo , Interferência de RNA , RNA Interferente Pequeno/genética
18.
EMBO Rep ; 19(9)2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-30018153

RESUMO

Impaired cell polarity is a hallmark of diseased tissue. In the cardiovascular system, laminar blood flow induces endothelial planar cell polarity, represented by elongated cell shape and asymmetric distribution of intracellular organelles along the axis of blood flow. Disrupted endothelial planar polarity is considered to be pro-inflammatory, suggesting that the establishment of endothelial polarity elicits an anti-inflammatory response. However, a causative relationship between polarity and inflammatory responses has not been firmly established. Here, we find that a cell polarity protein, PAR-3, is an essential gatekeeper of GSK3ß activity in response to laminar blood flow. We show that flow-induced spatial distribution of PAR-3/aPKCλ and aPKCλ/GSK3ß complexes controls local GSK3ß activity and thereby regulates endothelial planar polarity. The spatial information for GSK3ß activation is essential for flow-dependent polarity to the flow axis, but is not necessary for flow-induced anti-inflammatory response. Our results shed light on a novel relationship between endothelial polarity and vascular homeostasis highlighting avenues for novel therapeutic strategies.


Assuntos
Moléculas de Adesão Celular/fisiologia , Proteínas de Ciclo Celular/fisiologia , Polaridade Celular/fisiologia , Endotélio Vascular/metabolismo , Inflamação/metabolismo , Proteínas de Membrana/fisiologia , Proteínas Adaptadoras de Transdução de Sinal , Animais , Aorta/fisiopatologia , Aterosclerose/metabolismo , Aterosclerose/patologia , Proteínas do Citoesqueleto/metabolismo , Técnicas de Silenciamento de Genes , Células HEK293 , Homeostase/fisiologia , Células Endoteliais da Veia Umbilical Humana , Humanos , Proteínas de Membrana/metabolismo , Camundongos , Camundongos Transgênicos , Proteínas Nucleares/metabolismo , Proteína Quinase C/metabolismo , Fluxo Sanguíneo Regional , Proteínas Repressoras/metabolismo , Transdução de Sinais
19.
Am J Hum Genet ; 97(4): 555-66, 2015 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-26411495

RESUMO

The nuclear pore complex (NPC) is a huge protein complex embedded in the nuclear envelope. It has central functions in nucleocytoplasmic transport, nuclear framework, and gene regulation. Nucleoporin 107 kDa (NUP107) is a component of the NPC central scaffold and is an essential protein in all eukaryotic cells. Here, we report on biallelic NUP107 mutations in nine affected individuals who are from five unrelated families and show early-onset steroid-resistant nephrotic syndrome (SRNS). These individuals have pathologically focal segmental glomerulosclerosis, a condition that leads to end-stage renal disease with high frequency. NUP107 is ubiquitously expressed, including in glomerular podocytes. Three of four NUP107 mutations detected in the affected individuals hamper NUP107 binding to NUP133 (nucleoporin 133 kDa) and NUP107 incorporation into NPCs in vitro. Zebrafish with nup107 knockdown generated by morpholino oligonucleotides displayed hypoplastic glomerulus structures and abnormal podocyte foot processes, thereby mimicking the pathological changes seen in the kidneys of the SRNS individuals with NUP107 mutations. Considering the unique properties of the podocyte (highly differentiated foot-process architecture and slit membrane and the inability to regenerate), we propose a "podocyte-injury model" as the pathomechanism for SRNS due to biallelic NUP107 mutations.


Assuntos
Idade de Início , Mutação/genética , Síndrome Nefrótica/congênito , Complexo de Proteínas Formadoras de Poros Nucleares/genética , Proteínas de Peixe-Zebra/genética , Peixe-Zebra/genética , Alelos , Animais , Células Cultivadas , Criança , Pré-Escolar , Citoplasma/metabolismo , Feminino , Haplótipos , Humanos , Immunoblotting , Imunoprecipitação , Lactente , Rim/metabolismo , Rim/patologia , Masculino , Microscopia de Fluorescência , Síndrome Nefrótica/etiologia , Síndrome Nefrótica/patologia , Poro Nuclear , Complexo de Proteínas Formadoras de Poros Nucleares/antagonistas & inibidores , Oligorribonucleotídeos Antissenso/farmacologia , Linhagem , Podócitos/metabolismo , Podócitos/patologia , RNA Mensageiro/genética , Reação em Cadeia da Polimerase em Tempo Real , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Peixe-Zebra/crescimento & desenvolvimento , Proteínas de Peixe-Zebra/antagonistas & inibidores
20.
J Biochem ; 156(2): 115-28, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24700503

RESUMO

The slit diaphragm (SD), the specialized intercellular junction between renal glomerular epithelial cells (podocytes), provides a selective-filtration barrier in renal glomeruli. Dysfunction of the SD results in glomerular diseases that are characterized by disappearance of SD components, such as nephrin, from the cell surface. Although the importance of endocytosis and degradation of SD components for the maintenance of SD integrity has been suggested, the dynamic nature of the turnover of intact cell-surface SD components remained unclear. Using isolated rat glomeruli we show that the turnover rates of cell-surface SD components are relatively high; they almost completely disappear from the cell surface within minutes. The exocytosis, but not endocytosis, of heterologously expressed nephrin requires the kinase activity of the cell polarity regulator atypical protein kinase C (aPKC). Consistently, we demonstrate that podocyte-specific deletion of aPKCλ resulted in a decrease of cell-surface localization of SD components, causing massive proteinuria. In conclusion, the regulation of SD turnover by aPKC is crucial for the maintenance of SD integrity and defects in aPKC signalling can lead to proteinuria. These findings not only reveal the pivotal importance of the dynamic turnover of cell-surface SD components but also suggest a novel pathophysiological basis in glomerular disease.


Assuntos
Proteínas de Membrana/metabolismo , Podócitos/metabolismo , Proteína Quinase C/fisiologia , Animais , Membrana Celular/metabolismo , Endocitose , Exocitose , Células HCT116 , Humanos , Masculino , Camundongos Knockout , Transporte Proteico , Ratos Wistar
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA