Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Eur J Appl Physiol ; 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38565706

RESUMO

PURPOSE: We evaluated (1) whether participating in middle- and long-distance running races augments muscle soreness, oxygen cost, respiration, and exercise exertion during subsequent running, and (2) if post-race menthol application alleviates these responses in long-distance runners. METHODS: Eleven long-distance runners completed a 1500-m race on day 1 and a 3000-m race on day 2. On day 3 (post-race day), either a 4% menthol solution (Post-race menthol) or a placebo solution (Post-race placebo) serving as a vehicle control, was applied to their lower leg skin, and their perceptual and physiological responses were evaluated. The identical assessment with the placebo solution was also conducted without race participation (No-race placebo). RESULTS: The integrated muscle soreness index increased in the Post-race placebo compared to the No-race placebo (P < 0.001), but this response was absent in the Post-race menthol (P = 0.058). Oxygen uptake during treadmill running tended to be higher (4.3%) in the Post-race placebo vs. No-race placebo (P = 0.074). Oxygen uptake was 5.4% lower in the Post-race menthol compared to the Post-race placebo (P = 0.018). Minute ventilation during treadmill running was 6.7-7.6% higher in the Post-race placebo compared to No-race placebo, whereas it was 6.6-9.0% lower in the Post-race menthol vs. Post-race placebo (all P ≤ 0.001). The rate of perceived exertion was 7.0% lower in the Post-race menthol vs. Post-race placebo (P = 0.007). CONCLUSIONS: Middle- and long-distance races can subsequently elevate muscle soreness and induce respiratory and metabolic stress, but post-race menthol application to the lower legs can mitigate these responses and reduce exercise exertion in long-distance runners.

2.
High Alt Med Biol ; 23(2): 125-134, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35613387

RESUMO

Cao, Yinhang, Naoto Fujii, Tomomi Fujimoto, Yin-Feng Lai, Takeshi Ogawa, Tsutomu Hiroyama, Yasushi Enomoto, and Takeshi Nishiyasu. CO2-enriched air inhalation modulates the ventilatory and metabolic responses of endurance runners during incremental running in hypobaric hypoxia. High Alt Med Biol. 23:125-134, 2022. Aim: We measured the effects of breathing CO2-enriched air on ventilatory and metabolic responses during incremental running exercise under moderately hypobairc hypoxic (HH) conditions. Materials and Methods: Ten young male endurance runners [61.4 ± 6.0 ml/(min·kg)] performed incremental running tests under three conditions: (1) normobaric normoxia (NN), (2) HH (2,500 m), and (3) HH with 5% CO2 inhalation (HH+CO2). The test under NN was always performed first, and then, the two remaining tests were completed in random and counterbalanced order. Results: End-tidal CO2 partial pressure (55 ± 3 vs. 35 ± 1 mmHg), peak ventilation (163 ± 14 vs. 152 ± 12 l/min), and peak oxygen uptake [52.3 ± 5.5 vs. 50.5 ± 4.9 ml/(min·kg)] were all higher in the HH+CO2 than HH trial (all p < 0.01), respectively. However, the duration of the incremental test did not differ between HH+CO2 and HH trials. Conclusion: These data suggest that chemoreflex activation by breathing CO2-enriched air stimulates breathing and aerobic metabolism during maximal intensity exercise without affecting exercise performance in male endurance runners under a moderately hypobaric hypoxic environment.


Assuntos
Dióxido de Carbono , Corrida , Humanos , Hipóxia/metabolismo , Pulmão/metabolismo , Masculino , Oxigênio , Pressão Parcial
3.
Physiol Rep ; 8(12): e14494, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32597030

RESUMO

We investigated the effect of low energy availability (LEA) during three consecutive days of endurance training on muscle glycogen content and iron metabolism. Six male long distance runners completed three consecutive days of endurance training under LEA or neutral energy availability (NEA) conditions. Energy availability was set at 20 kcal/kg fat-free mass (FFM)/day for LEA and 45 kcal/kg FFM/day for NEA. The subjects ran for 75 min at 70% of maximal oxygen uptake ( V˙ O2max ) on days 1-3. Venous blood samples were collected following an overnight fast on days 1-4, immediately and 3 hr after exercise on day 3. The muscle glycogen content on days 1-4 was evaluated by carbon-magnetic resonance spectroscopy. In LEA condition, the body weight and muscle glycogen content on days 2-4, and the FFM on days 2 and 4 were significantly lower than those on day1 (p < .05 vs. day1), whereas no significant change was observed throughout the training period in NEA condition. On day 3, muscle glycogen content before exercise was negatively correlated with serum iron level (immediately after exercise, 3 hr after exercise), serum hepcidin level immediately after exercise, and plasma IL-6 level immediately after exercise (p < .05). Moreover, serum hepcidin level on day 4 was significantly higher in LEA condition than that in NEA condition (p < .05). In conclusion, three consecutive days of endurance training under LEA reduced the muscle glycogen content with concomitant increased serum hepcidin levels in male long distance runners.


Assuntos
Treino Aeróbico , Glicogênio/metabolismo , Ferro/metabolismo , Consumo de Oxigênio/fisiologia , Corrida/fisiologia , Adulto , Restrição Calórica , Estudos Cross-Over , Metabolismo Energético , Hepcidinas/sangue , Humanos , Masculino , Adulto Jovem
4.
Physiol Rep ; 7(3): e13996, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30714335

RESUMO

We tested whether expiratory flow limitation (EFL) occurs in endurance athletes in a moderately hypobaric hypoxic environment equivalent to 2500 m above sea level and, if so, whether EFL inhibits peak ventilation ( V˙ Epeak ), thereby exacerbating the hypoxia-induced reduction in peak oxygen uptake ( V˙ O2peak ). Seventeen young male endurance runners performed incremental exhaustive running on separate days under hypobaric hypoxic (560 mmHg) and normobaric normoxic (760 mmHg) conditions. Oxygen uptake ( V˙ O2 ), minute ventilation ( V˙ E), arterial O2 saturation (SpO2 ), and operating lung volume were measured throughout the incremental exercise. Among the runners tested, 35% exhibited EFL (EFL group, n = 6) in the hypobaric hypoxic condition, whereas the rest did not (Non-EFL group, n = 11). There were no differences between the EFL and Non-EFL groups for V˙ Epeak and V˙ O2peak under either condition. Percent changes in V˙ Epeak (4 ± 4 vs. 2 ± 4%) and V˙ O2peak (-18 ± 6 vs. -16 ± 6%) from normobaric normoxia to hypobaric hypoxia also did not differ between the EFL and Non-EFL groups (all P > 0.05). No differences in maximal running velocity, SpO2 , or operating lung volume were detected between the two groups under either condition. These results suggest that under the moderate hypobaric hypoxia (2500 m above sea level) frequently used for high-attitude training, ~35% of endurance athletes may exhibit EFL, but their ventilatory and metabolic responses during maximal exercise are similar to those who do not exhibit EFL.


Assuntos
Hipóxia/fisiopatologia , Pulmão/fisiopatologia , Contração Muscular , Músculo Esquelético/fisiopatologia , Condicionamento Físico Humano/métodos , Resistência Física , Ventilação Pulmonar , Corrida , Aclimatação , Altitude , Metabolismo Energético , Tolerância ao Exercício , Humanos , Hipóxia/metabolismo , Masculino , Fadiga Muscular , Músculo Esquelético/metabolismo , Consumo de Oxigênio , Fatores de Tempo , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...