Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Nanosci Au ; 4(1): 62-68, 2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-38406311

RESUMO

Ligand dynamics plays a critical role in the chemical and biological properties of gold nanoparticles (AuNPs). In this study, ligands featuring hydrophobic alkanethiol interiors and hydrophilic shells were used to systematically examine the effects of ligand headgroups on the ligand dynamics. Solution nuclear magnetic resonance (NMR) spectroscopy provided quantitative insight into the monolayer ligand dynamics. Notably, the introduction of hydrophobic moieties to the cationic headgroups significantly decreased ligand conformational mobility; however, variations in hydrophobicity among these moieties had a limited effect on this reduction. Further examination of ligand dynamics under various physiological conditions, including ionic strength and temperature, showed that ligands bound to the AuNP surface become less conformationally mobile with an increase in ionic strength or decreasing temperature. This exploration of ligand dynamics provides insight into designing nanoparticles tailored to specific biological applications.

2.
Chem Sci ; 15(7): 2486-2494, 2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-38362405

RESUMO

Macrophages are plastic cells of the immune system that can be broadly classified as having pro-inflammatory (M1-like) or anti-inflammatory (M2-like) phenotypes. M2-like macrophages are often associated with cancers and can promote cancer growth and create an immune-suppressive tumor microenvironment. Repolarizing macrophages from M2-like to M1-like phenotype provides a crucial strategy for anticancer immunotherapy. Imiquimod is an FDA-approved small molecule that can polarize macrophages by activating toll-like receptor 7/8 (TLR 7/8) located inside lysosomes. However, the non-specific inflammation that results from the drug has limited its systemic application. To overcome this issue, we report the use of gold nanoparticle-based bioorthogonal nanozymes for the conversion of an inactive, imiquimod-based prodrug to an active compound for macrophage re-education from anti- to pro-inflammatory phenotypes. The nanozymes were delivered to macrophages through endocytosis, where they uncaged pro-imiquimod in situ. The generation of imiquimod resulted in the expression of pro-inflammatory cytokines. The re-educated M1-like macrophages feature enhanced phagocytosis of cancer cells, leading to efficient macrophage-based tumor cell killing.

3.
J Hazard Mater ; 466: 133590, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38280324

RESUMO

Mox macrophages were identified recently and are closely associated with atherosclerosis. Considering the potential health risks and the impact on macrophage modulation, this study investigated the Mox polarization of macrophages induced by nanoparticles (NPs) with tunable hydrophobicity. One nanoparticle (C4NP) with intermediate hydrophobicity efficiently upregulated the mRNA expression of Mox-related genes including HO-1, Srxn1, Txnrd1, Gsr, Vegf and Cox-2 through increased accumulation of Nrf2 at a nontoxic concentration in both resting and LPS-challenged macrophages. Additionally, C4NP impaired phagocytic capacity by 20% and significantly increased the secretion of cytokines, including TNFα, IL-6 and IL-10. Mechanistic studies indicated that intracellular reactive oxygen species (ROS) were elevated by 1.5-fold and 2.6-fold in resting and LPS-challenged macrophages respectively. Phosphorylated p62 was increased by 2.5-fold in resting macrophages and maintained a high level in LPS-challenged ones, both of which partially accounted for the significant accumulation of Nrf2 and HO-1. Notably, C4NP depolarized mitochondrial membrane potential by more than 50% and switched macrophages from oxidative phosphorylation-based aerobic metabolism to glycolysis for energy supply. Overall, this study reveals a novel molecular mechanism potentially involving ROS-Nrf2-p62 signaling in mediating macrophage Mox polarization, holding promise in ensuring safer and more efficient use of nanomaterials.


Assuntos
Fator 2 Relacionado a NF-E2 , Nanopartículas , Fator 2 Relacionado a NF-E2/genética , Fator 2 Relacionado a NF-E2/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Lipopolissacarídeos/farmacologia , Macrófagos/metabolismo , Nanopartículas/toxicidade , Heme Oxigenase-1/genética
4.
Adv Mater ; 36(10): e2300943, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37042795

RESUMO

The incorporation of transition metal catalysts (TMCs) into nanoscaffolds generates nanocatalysts that replicate key aspects of enzymatic behavior. The TMCs can access bioorthogonal chemistry unavailable to living systems. These bioorthogonal nanozymes can be employed as in situ "factories" for generating bioactive molecules where needed. The generation of effective bioorthogonal nanozymes requires co-engineering of the TMC and the nanometric scaffold. This review presents an overview of recent advances in the field of bioorthogonal nanozymes, focusing on modular design aspects of both nanomaterial and catalyst and how they synergistically work together for in situ uncaging of imaging and therapeutic agents.


Assuntos
Elementos de Transição , Elementos de Transição/química , Catálise
5.
Nano Converg ; 10(1): 42, 2023 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-37695365

RESUMO

Nanozymes mimic the function of enzymes, which drive essential intracellular chemical reactions that govern biological processes. They efficiently generate or degrade specific biomolecules that can initiate or inhibit biological processes, regulating cellular behaviors. Two approaches for utilizing nanozymes in intracellular chemistry have been reported. Biomimetic catalysis replicates the identical reactions of natural enzymes, and bioorthogonal catalysis enables chemistries inaccessible in cells. Various nanozymes based on nanomaterials and catalytic metals are employed to attain intended specific catalysis in cells either to mimic the enzymatic mechanism and kinetics or expand inaccessible chemistries. Each nanozyme approach has its own intrinsic advantages and limitations, making them complementary for diverse and specific applications. This review summarizes the strategies for intracellular catalysis and applications of biomimetic and bioorthogonal nanozymes, including a discussion of their limitations and future research directions.

6.
Nanoscale ; 15(33): 13595-13602, 2023 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-37554065

RESUMO

Bioorthogonal catalysis mediated by transition metal catalysts (TMCs) provides controlled in situ activation of prodrugs through chemical reactions that do not interfere with cellular bioprocesses. The direct use of 'naked' TMCs in biological environments can have issues of solubility, deactivation, and toxicity. Here, we demonstrate the design and application of a biodegradable nanoemulsion-based scaffold stabilized by a cationic polymer that encapsulates a palladium-based TMC, generating bioorthogonal nanocatalyst "polyzymes". These nanocatalysts enhance the stability and catalytic activity of the TMCs while maintaining excellent mammalian cell biocompatibility. The therapeutic potential of these nanocatalysts was demonstrated through efficient activation of a non-toxic prodrug into an active chemotherapeutic drug, leading to efficient killing of cancer cells.


Assuntos
Pró-Fármacos , Elementos de Transição , Animais , Paládio/farmacologia , Pró-Fármacos/farmacologia , Pró-Fármacos/uso terapêutico , Catálise , Mamíferos
7.
Acc Chem Res ; 56(16): 2151-2169, 2023 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-37505102

RESUMO

Nanoparticles (NPs) have incredible potential in biology and biomedicine. Gold nanoparticles (AuNPs) have become a cornerstone of the nanomedicine revolution due to their ease of synthesis, inertness, and versatility. The widespread use of AuNPs can be traced to the development of accessible, bottom-up wet synthesis methods that emphasized the role of ligands in controlling the size, dispersity, and stability of colloids in solution. Decoration of AuNPs with organic ligands can be used to dictate the interactions of these nanomaterials with biosystems on multiple scales. The tunability of the AuNP ligand monolayer via covalent and noncovalent approaches allows the use of AuNPs in a broad range of biomedical fields.In this Account, we describe our use of AuNPs to answer a central question in the ligand engineering of colloidal nanoparticles: can we fabricate NPs that are nontoxic, modular, and functional in biological environments? We explored spherical AuNPs of different sizes and ligand structures, empirically exploring the AuNP-biomolecule interaction. We show here how the atom-by-atom control provided by organic synthesis can be used to create engineered ligands. Presenting these ligands on the surface of AuNPs creates multivalent constructs with unique and useful properties. Ligand design is a key feature of these AuNPs. We have developed ligands that have three distinct structural segments: 1) a hydrophobic alkanethiol interior that imparts stability; 2) a tetra(ethylene glycol) segment that creates a noninteracting tabula rasa surface; and 3) ligand headgroups that dictate how the AuNP interacts with the outside world. Our research into the design principles of ligands on AuNPs and their interactions with biological systems can be translated to other nanoparticle systems.This Account also summarizes the trajectory of ligand engineering in our laboratory and further afield. At the outset, experimental and theoretical fundamental studies were focused on the interactions between AuNPs and cellular components, such as proteins and lipid membranes. Understanding these behaviors provided the direction for investigating how ligands mediate the interface of AuNPs with mammalian and bacterial cells. In these experiments, it was particularly noteworthy that the ligand hydrophobicity and charge play a significant role in the uptake and toxicity of AuNPs. These revelations formed a basis for translating AuNPs to physiological environments. We present how we have integrated our synthetic abilities to construct AuNPs for biomedical applications, including delivery, bioorthogonal catalysis, antimicrobial and antitumor therapeutics, and biosensing.Overall, we hope that this Account will give the reader insight into how our research has evolved, changing AuNPs from synthetic curiosities into functional nanoplatforms for nanomedicine, all through the power of ligand design and synthesis.


Assuntos
Ouro , Nanopartículas Metálicas , Animais , Ouro/química , Nanopartículas Metálicas/química , Ligantes , Biologia , Mamíferos
8.
J Control Release ; 357: 31-39, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36948419

RESUMO

Bioorthogonal catalysis via transition metal catalysts (TMCs) enables the generation of therapeutics locally through chemical reactions not accessible by biological systems. This localization can enhance the efficacy of anticancer treatment while minimizing off-target effects. The encapsulation of TMCs into nanomaterials generates "nanozymes" to activate imaging and therapeutic agents. Here, we report the use of cationic bioorthogonal nanozymes to create localized "drug factories" for cancer therapy in vivo. These nanozymes remained present at the tumor site at least seven days after a single injection due to the interactions between cationic surface ligands and negatively charged cell membranes and tissue components. The prodrug was then administered systemically, and the nanozymes continuously converted the non-toxic molecules into active drugs locally. This strategy substantially reduced the tumor growth in an aggressive breast cancer model, with significantly reduced liver damage compared to traditional chemotherapy.


Assuntos
Neoplasias da Mama , Nanoestruturas , Humanos , Feminino , Neoplasias da Mama/diagnóstico por imagem , Neoplasias da Mama/tratamento farmacológico , Diagnóstico por Imagem , Catálise , Membrana Celular
9.
Adv Drug Deliv Rev ; 195: 114730, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36791809

RESUMO

Bioorthogonal transition metal catalysts (TMCs) transform therapeutically inactive molecules (pro-drugs) into active drug compounds. Inorganic nanoscaffolds protect and solubilize catalysts while offering a flexible design space for decoration with targeting elements and stimuli-responsive activity. These "drug factories" can activate pro-drugs in situ, localizing treatment to the disease site and minimizing off-target effects. Inorganic nanoscaffolds provide structurally diverse scaffolds for encapsulating TMCs. This ability to define the catalyst environment can be employed to enhance the stability and selectivity of the TMC, providing access to enzyme-like bioorthogonal processes. The use of inorganic nanomaterials as scaffolds TMCs and the use of these bioorthogonal nanozymes in vitro and in vivo applications will be discussed in this review.


Assuntos
Nanopartículas Metálicas , Nanopartículas , Nanoestruturas , Pró-Fármacos , Elementos de Transição , Humanos , Catálise
10.
Materials (Basel) ; 15(18)2022 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-36143797

RESUMO

Bioorthogonal chemistry introduces nonbiogenic reactions that can be performed in biological systems, allowing for the localized release of therapeutic agents. Bioorthogonal catalysts can amplify uncaging reactions for the in situ generation of therapeutics. Embedding these catalysts into a polymeric nanoscaffold can protect and modulate the catalytic activity, improving the performance of the resulting bioorthogonal "polyzymes". Catalysts based on nontoxic metals such as gold(I) are particularly attractive for therapeutic applications. Herein, we optimized the structural components of a metal catalyst to develop an efficient gold(I)-based polyzyme. Tailoring the ligand structure of gold phosphine-based complexes, we improved the affinity between the metal complex and polymer scaffold, resulting in enhanced encapsulation efficiency and catalytic rate of the polyzyme. Our findings show the dependence of the overall polyzyme properties on the structural properties of the encapsulated metal complex.

11.
ACS Appl Mater Interfaces ; 14(28): 31594-31600, 2022 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-35802797

RESUMO

Transition-metal catalysts (TMCs) effect bioorthogonal transformations that enable the generation of therapeutic agents in situ, minimizing off-target effects. The encapsulation of insoluble TMCs into polymeric nanoparticles to generate "polyzymes" has vastly expanded their applicability in biological environments by enhancing catalyst solubility and stability. However, commonly used precipitation approaches provide limited encapsulation efficiency in polyzyme fabrication and result in a low catalytic activity. Herein, we report the creation of polyzymes with increased catalyst loading and optimized turnover efficiency using flash nanoprecipitation (FNP). Polyzymes with controlled size and catalyst loading were fabricated by tuning the process conditions of FNP. The biological applicability of polyzymes was demonstrated by efficiently transforming a non-toxic prodrug into the active drug within cancer cells.


Assuntos
Nanopartículas , Elementos de Transição , Precipitação Química , Polietilenoglicóis , Polímeros , Solubilidade
12.
Adv Drug Deliv Rev ; 176: 113893, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34333074

RESUMO

Bioorthogonal chemistry refers to any chemical reactions that can occur inside of living systems without interfering with native biochemical processes, which has become a promising strategy for modulating biological processes. The development of synthetic metal-based catalysts to perform bioorthogonal reactions has significantly expanded the toolkit of bioorthogonal chemistry for medicinal chemistry and synthetic biology. A wide range of homogeneous and heterogeneous transition metal catalysts (TMCs) have been reported, mediating different transformations such as cycloaddition reactions, as well as bond forming and cleaving reactions. However, the direct application of 'naked' TMCs in complex biological media poses numerous challenges, including poor water solubility, toxicity and catalyst deactivation. Incorporating TMCs into nanomaterials to create bioorthogonal nanocatalysts can solubilize and stabilize catalyst molecules, with the decoration of the nanocatalysts used to provide spatiotemporal control of catalysis. This review presents an overview of the advances in the creation of bioorthogonal nanocatalysts, highlighting different choice of nano-scaffolds, and the therapeutic and diagnostic applications.


Assuntos
Metais , Nanoestruturas , Animais , Catálise , Humanos , Metais/administração & dosagem , Metais/química , Nanoestruturas/administração & dosagem , Nanoestruturas/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...