Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Ecol Lett ; 27(2): e14389, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38382913

RESUMO

Metabolism underpins all life-sustaining processes and varies profoundly with body size, temperature and locomotor activity. A current theory explains some of the size-dependence of metabolic rate (its mass exponent, b) through changes in metabolic level (L). We propose two predictive advances that: (a) combine the above theory with the evolved avoidance of oxygen limitation in water-breathers experiencing warming, and (b) quantify the overall magnitude of combined temperatures and degrees of locomotion on metabolic scaling across air- and water-breathers. We use intraspecific metabolic scaling responses to temperature (523 regressions) and activity (281 regressions) in diverse ectothermic vertebrates (fish, reptiles and amphibians) to show that b decreases with temperature-increased L in water-breathers, supporting surface area-related avoidance of oxygen limitation, whereas b increases with activity-increased L in air-breathers, following volume-related influences. This new theoretical integration quantitatively incorporates different influences (warming, locomotion) and respiration modes (aquatic, terrestrial) on animal energetics.


Assuntos
Peixes , Vertebrados , Animais , Temperatura , Tamanho Corporal , Oxigênio/fisiologia
2.
J Fish Biol ; 103(4): 749-751, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37807628

Assuntos
Peixes , Animais
3.
PeerJ ; 11: e14846, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36874979

RESUMO

Sessile marine invertebrates on hard substrates are one of the two canonical examples of communities structured by competition, but some aspects of their dynamics remain poorly understood. Jellyfish polyps are an important but under-studied component of these communities. We determined how jellyfish polyps interact with their potential competitors in sessile marine hard-substrate communities, using a combination of experiments and modelling. We carried out an experimental study of the interaction between polyps of the moon jellyfish Aurelia aurita and potential competitors on settlement panels, in which we determined the effects of reduction in relative abundance of either A. aurita or potential competitors at two depths. We predicted that removal of potential competitors would result in a relative increase in A. aurita that would not depend on depth, and that removal of A. aurita would result in a relative increase in potential competitors that would be stronger at shallower depths, where oxygen is less likely to be limiting. Removal of potential competitors resulted in a relative increase in A. aurita at both depths, as predicted. Unexpectedly, removal of A. aurita resulted in a relative decrease in potential competitors at both depths. We investigated a range of models of competition for space, of which the most successful involved enhanced overgrowth of A. aurita by potential competitors, but none of these models was completely able to reproduce the observed pattern. Our results suggest that interspecific interactions in this canonical example of a competitive system are more complex than is generally believed.


Assuntos
Cnidários , Cifozoários , Animais , Oxigênio
4.
Biol Rev Camb Philos Soc ; 96(1): 247-268, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-32959989

RESUMO

Body size is central to ecology at levels ranging from organismal fecundity to the functioning of communities and ecosystems. Understanding temperature-induced variations in body size is therefore of fundamental and applied interest, yet thermal responses of body size remain poorly understood. Temperature-size (T-S) responses tend to be negative (e.g. smaller body size at maturity when reared under warmer conditions), which has been termed the temperature-size rule (TSR). Explanations emphasize either physiological mechanisms (e.g. limitation of oxygen or other resources and temperature-dependent resource allocation) or the adaptive value of either a large body size (e.g. to increase fecundity) or a short development time (e.g. in response to increased mortality in warm conditions). Oxygen limitation could act as a proximate factor, but we suggest it more likely constitutes a selective pressure to reduce body size in the warm: risks of oxygen limitation will be reduced as a consequence of evolution eliminating genotypes more prone to oxygen limitation. Thus, T-S responses can be explained by the 'Ghost of Oxygen-limitation Past', whereby the resulting (evolved) T-S responses safeguard sufficient oxygen provisioning under warmer conditions, reflecting the balance between oxygen supply and demands experienced by ancestors. T-S responses vary considerably across species, but some of this variation is predictable. Body-size reductions with warming are stronger in aquatic taxa than in terrestrial taxa. We discuss whether larger aquatic taxa may especially face greater risks of oxygen limitation as they grow, which may be manifested at the cellular level, the level of the gills and the whole-organism level. In contrast to aquatic species, terrestrial ectotherms may be less prone to oxygen limitation and prioritize early maturity over large size, likely because overwintering is more challenging, with concomitant stronger end-of season time constraints. Mechanisms related to time constraints and oxygen limitation are not mutually exclusive explanations for the TSR. Rather, these and other mechanisms may operate in tandem. But their relative importance may vary depending on the ecology and physiology of the species in question, explaining not only the general tendency of negative T-S responses but also variation in T-S responses among animals differing in mode of respiration (e.g. water breathers versus air breathers), genome size, voltinism and thermally associated behaviour (e.g. heliotherms).


Assuntos
Ecossistema , Oxigênio , Animais , Tamanho Corporal , Temperatura
5.
Sci Rep ; 10(1): 7953, 2020 05 14.
Artigo em Inglês | MEDLINE | ID: mdl-32409646

RESUMO

All organisms grow. Numerous growth functions have been applied to a wide taxonomic range of organisms, yet some of these models have poor fits to empirical data and lack of flexibility in capturing variation in growth rate. We propose a new VBGF framework that broadens the applicability and increases flexibility of fitting growth curves. This framework offers a curve-fitting procedure for five parameterisations of the VBGF: these allow for different body-size scaling exponents for anabolism (biosynthesis potential), besides the commonly assumed 2/3 power scaling, and allow for supra-exponential growth, which is at times observed. This procedure is applied to twelve species of diverse aquatic invertebrates, including both pelagic and benthic organisms. We reveal widespread variation in the body-size scaling of biosynthesis potential and consequently growth rate, ranging from isomorphic to supra-exponential growth. This curve-fitting methodology offers improved growth predictions and applies the VBGF to a wider range of taxa that exhibit variation in the scaling of biosynthesis potential. Applying this framework results in reliable growth predictions that are important for assessing individual growth, population production and ecosystem functioning, including in the assessment of sustainability of fisheries and aquaculture.


Assuntos
Tamanho Corporal , Modelos Biológicos , Animais , Especificidade da Espécie
6.
Proc Biol Sci ; 287(1918): 20192640, 2020 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-31937230

RESUMO

Variation in the degree of sexual size dimorphism (SSD) among taxa is generally considered to arise from differences in the relative intensity of male-male competition and fecundity selection. One might predict, therefore, that SSD will vary systematically with (1) the intensity of sexual selection for increased male size, and (2) the intensity of fecundity selection for increased female size. To test these two fundamental hypotheses, we conducted a phylogenetic comparative analysis of SSD in fish. Specifically, using records of body length at first sexual maturity from FishBase, we quantified variation in the magnitude and direction of SSD in more than 600 diverse freshwater and marine fish species, from sticklebacks to sharks. Although female-biased SSD was common, and thought to be driven primarily by fecundity selection, variation in SSD was not dependent on either the allometric scaling of reproductive energy output or fecundity in female fish. Instead, systematic patterns based on habitat and life-history characteristics associated with varying degrees of male-male competition and paternal care strongly suggest that adaptive variation in SSD is driven by the intensity of sexual selection for increased male size.


Assuntos
Tamanho Corporal , Caracteres Sexuais , Smegmamorpha/fisiologia , Animais , Evolução Biológica , Ecossistema , Feminino , Fertilidade , Masculino , Filogenia , Reprodução
7.
Philos Trans R Soc Lond B Biol Sci ; 374(1778): 20180543, 2019 08 05.
Artigo em Inglês | MEDLINE | ID: mdl-31203759

RESUMO

Metabolic rates are fundamental to many biological processes, and commonly scale with body size with an exponent ( bR) between 2/3 and 1 for reasons still debated. According to the 'metabolic-level boundaries hypothesis', bR depends on the metabolic level ( LR). We test this prediction and show that across cephalopod species intraspecific bR correlates positively with not only LR but also the scaling of body surface area with body mass. Cephalopod species with high LR maintain near constant mass-specific metabolic rates, growth and probably inner-mantle surface area for exchange of respiratory gases or wastes throughout their lives. By contrast, teleost fish show a negative correlation between bR and LR. We hypothesize that this striking taxonomic difference arises because both resource supply and demand scale differently in fish and cephalopods, as a result of contrasting mortality and energetic pressures, likely related to different locomotion costs and predation pressure. Cephalopods with high LR exhibit relatively steep scaling of growth, locomotion, and resource-exchange surface area, made possible by body-shape shifting. We suggest that differences in lifestyle, growth and body shape with changing water depth may be useful for predicting contrasting metabolic scaling for coexisting animals of similar sizes. This article is part of the theme issue 'Physiological diversity, biodiversity patterns and global climate change: testing key hypotheses involving temperature and oxygen'.


Assuntos
Cefalópodes/metabolismo , Ecossistema , Peixes/metabolismo , Animais , Tamanho Corporal , Peso Corporal , Cefalópodes/química , Cefalópodes/classificação , Cefalópodes/crescimento & desenvolvimento , Mudança Climática , Metabolismo Energético , Peixes/classificação , Peixes/crescimento & desenvolvimento , Cinética , Comportamento Predatório , Temperatura
8.
Oecologia ; 190(2): 343-353, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-31161468

RESUMO

Body size at maturity often varies with environmental conditions, as well as between males and females within a species [termed Sexual Size Dimorphism (SSD)]. Variation in body size clines between the sexes can determine the degree to which SSD varies across environmental gradients. We use a meta-analytic approach to investigate whether major biogeographical and temporal (intra-annually across seasons) body size clines differ systematically between the sexes in arthropods. We consider 329 intra-specific environmental gradients in adult body size across latitude, altitude and with seasonal temperature variation, representing 126 arthropod species from 16 taxonomic orders. On average, we observe greater variability in male than female body size across latitude, consistent with the hypothesis that, over evolutionary time, directional selection has acted more strongly on male than female size. In contrast, neither sex exhibits consistently greater proportional changes in body size than the other sex across altitudinal or seasonal gradients, akin to earlier findings for plastic temperature-size responses measured in the laboratory. Variation in the degree to which body size gradients differ between the sexes cannot be explained by a range of potentially influential factors, including environment type (aquatic vs. terrestrial), voltinism, mean species' body size, degree of SSD, or gradient direction. Ultimately, if we are to make better sense of the patterns (or lack thereof) in SSD across environmental gradients, we require a more detailed understanding of the underlying selective pressures driving clines in body size. Such understanding will provide a more comprehensive hypothesis-driven approach to explaining biogeographical and temporal variation in SSD.


Assuntos
Artrópodes , Animais , Tamanho Corporal , Clima , Feminino , Masculino , Estações do Ano , Caracteres Sexuais
9.
Front Microbiol ; 8: 1298, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28747904

RESUMO

Although aquatic ecologists and biogeochemists are well aware of the crucial importance of ecosystem functions, i.e., how biota drive biogeochemical processes and vice-versa, linking these fields in conceptual models is still uncommon. Attempts to explain the variability in elemental cycling consequently miss an important biological component and thereby impede a comprehensive understanding of the underlying processes governing energy and matter flow and transformation. The fate of multiple chemical elements in ecosystems is strongly linked by biotic demand and uptake; thus, considering elemental stoichiometry is important for both biogeochemical and ecological research. Nonetheless, assessments of ecological stoichiometry (ES) often focus on the elemental content of biota rather than taking a more holistic view by examining both elemental pools and fluxes (e.g., organismal stoichiometry and ecosystem process rates). ES theory holds the promise to be a unifying concept to link across hierarchical scales of patterns and processes in ecology, but this has not been fully achieved. Therefore, we propose connecting the expertise of aquatic ecologists and biogeochemists with ES theory as a common currency to connect food webs, ecosystem metabolism, and biogeochemistry, as they are inherently concatenated by the transfer of carbon, nitrogen, and phosphorous through biotic and abiotic nutrient transformation and fluxes. Several new studies exist that demonstrate the connections between food web ecology, biogeochemistry, and ecosystem metabolism. In addition to a general introduction into the topic, this paper presents examples of how these fields can be combined with a focus on ES. In this review, a series of concepts have guided the discussion: (1) changing biogeochemistry affects trophic interactions and ecosystem processes by altering the elemental ratios of key species and assemblages; (2) changing trophic dynamics influences the transformation and fluxes of matter across environmental boundaries; (3) changing ecosystem metabolism will alter the chemical diversity of the non-living environment. Finally, we propose that using ES to link nutrient cycling, trophic dynamics, and ecosystem metabolism would allow for a more holistic understanding of ecosystem functions in a changing environment.

10.
Proc Biol Sci ; 284(1851)2017 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-28356455

RESUMO

Major biological and biogeographical rules link body size variation with latitude or environmental temperature, and these rules are often studied in isolation. Within multivoltine species, seasonal temperature variation can cause substantial changes in adult body size, as subsequent generations experience different developmental conditions. Yet, unlike other size patterns, these common seasonal temperature-size gradients have never been collectively analysed. We undertake the largest analysis to date of seasonal temperature-size gradients in multivoltine arthropods, including 102 aquatic and terrestrial species from 71 global locations. Adult size declines in warmer seasons in 86% of the species examined. Aquatic species show approximately 2.5-fold greater reduction in size per °C of warming than terrestrial species, supporting the hypothesis that greater oxygen limitation in water than in air forces aquatic species to exhibit greater plasticity in body size with temperature. Total percentage change in size over the annual cycle appears relatively constant with annual temperature range but varies between environments, such that the overall size reduction in aquatic-developing species (approx. 31%) is almost threefold greater than in terrestrial species (approx. 11%). For the first time, we show that strong correlations exist between seasonal temperature-size gradients, laboratory responses and latitudinal-size clines, suggesting that these patterns share common drivers.


Assuntos
Artrópodes/crescimento & desenvolvimento , Tamanho Corporal , Estações do Ano , Temperatura , Animais , Clima
11.
Proc Biol Sci ; 282(1820): 20152475, 2015 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-26645202

RESUMO

Sexual size dimorphism (SSD) is often affected by environmental conditions, but the effect of temperature on SSD in ectotherms still requires rigorous investigation. We compared the plastic responses of size-at-maturity to temperature between males and females within 85 diverse arthropod species, in which individuals of both sexes were reared through ontogeny under identical conditions with excess food. We find that the sexes show similar relative (proportional) temperature-body size (T-S) responses on average. The high degree of similarity occurs despite an analysis that includes a wide range of animal body sizes, variation in degree of SSD and differences in the sign of the T-S response. We find no support for Rensch's rule, which predicts greater variation in male size, or indeed the reverse, greater female size variation. SSD shows no systematic temperature dependence in any of the 17 arthropod orders examined, five of which (Diptera, Orthoptera, Lepidoptera, Coleoptera and Calanoida) include more than six thermal responses. We suggest that the same proportional T-S response may generally have equivalent fitness costs and benefits in both sexes. This contrasts with effects of juvenile density, and food quantity/quality, which commonly result in greater size plasticity in females, suggesting these variables have different adaptive effects on SSD.


Assuntos
Artrópodes/fisiologia , Tamanho Corporal , Temperatura , Animais , Artrópodes/anatomia & histologia , Feminino , Masculino , Caracteres Sexuais
12.
Proc Biol Sci ; 282(1802)2015 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-25652833

RESUMO

Metabolism fuels all biological activities, and thus understanding its variation is fundamentally important. Much of this variation is related to body size, which is commonly believed to follow a 3/4-power scaling law. However, during ontogeny, many kinds of animals and plants show marked shifts in metabolic scaling that deviate from 3/4-power scaling predicted by general models. Here, we show that in diverse aquatic invertebrates, ontogenetic shifts in the scaling of routine metabolic rate from near isometry (bR = scaling exponent approx. 1) to negative allometry (bR < 1), or the reverse, are associated with significant changes in body shape (indexed by bL = the scaling exponent of the relationship between body mass and body length). The observed inverse correlations between bR and bL are predicted by metabolic scaling theory that emphasizes resource/waste fluxes across external body surfaces, but contradict theory that emphasizes resource transport through internal networks. Geometric estimates of the scaling of surface area (SA) with body mass (bA) further show that ontogenetic shifts in bR and bA are positively correlated. These results support new metabolic scaling theory based on SA influences that may be applied to ontogenetic shifts in bR shown by many kinds of animals and plants.


Assuntos
Invertebrados/crescimento & desenvolvimento , Invertebrados/metabolismo , Animais , Organismos Aquáticos/crescimento & desenvolvimento , Organismos Aquáticos/metabolismo , Tamanho Corporal , Peso Corporal , Metabolismo Energético
13.
Ecol Lett ; 18(4): 327-35, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25682961

RESUMO

Two major intraspecific patterns of adult size variation are plastic temperature-size (T-S) responses and latitude-size (L-S) clines. Yet, the degree to which these co-vary and share explanatory mechanisms has not been systematically evaluated. We present the largest quantitative comparison of these gradients to date, and find that their direction and magnitude co-vary among 12 arthropod orders (r(2) = 0.72). Body size in aquatic species generally reduces with both warming and decreasing latitude, whereas terrestrial species have much reduced and even opposite gradients. These patterns support the prediction that oxygen limitation is a major controlling factor in water, but not in air. Furthermore, voltinism explains much of the variation in T-S and L-S patterns in terrestrial but not aquatic species. While body size decreases with warming and with decreasing latitude in multivoltine terrestrial arthropods, size increases on average in univoltine species, consistent with predictions from size vs. season-length trade-offs.


Assuntos
Artrópodes/anatomia & histologia , Tamanho Corporal , Temperatura , Animais , Organismos Aquáticos , Modelos Biológicos
14.
Proc Biol Sci ; 281(1791): 20140739, 2014 09 22.
Artigo em Inglês | MEDLINE | ID: mdl-25100692

RESUMO

Major theories compete to explain the macroevolutionary trends observed in sexual size dimorphism (SSD) in animals. Quantitative genetic theory suggests that the sex under historically stronger directional selection will exhibit greater interspecific variance in size, with covariation between allometric slopes (male to female size) and the strength of SSD across clades. Rensch's rule (RR) also suggests a correlation, but one in which males are always the more size variant sex. Examining free-living pelagic and parasitic Copepoda, we test these competing predictions. Females are commonly the larger sex in copepod species. Comparing clades that vary by four orders of magnitude in their degree of dimorphism, we show that isometry is widespread. As such we find no support for either RR or for covariation between allometry and SSD. Our results suggest that selection on both sexes has been equally important. We next test the prediction that variation in the degree of SSD is related to the adult sex ratio. As males become relatively less abundant, it has been hypothesized that this will lead to a reduction in both inter-male competition and male size. However, the lack of such a correlation across diverse free-living pelagic families of copepods provides no support for this hypothesis. By comparison, in sea lice of the family Caligidae, there is some qualitative support of the hypothesis, males may suffer elevated mortality when they leave the host and rove for sedentary females, and their female-biased SSD is greater than in many free-living families. However, other parasitic copepods which do not appear to have obvious differences in sex-based mate searching risks also show similar or even more extreme SSD, therefore suggesting other factors can drive the observed extremes.


Assuntos
Evolução Biológica , Tamanho Corporal , Copépodes/fisiologia , Animais , Copépodes/anatomia & histologia , Copépodes/crescimento & desenvolvimento , Feminino , Masculino , Caracteres Sexuais , Zooplâncton/crescimento & desenvolvimento , Zooplâncton/fisiologia
15.
Ecol Lett ; 17(10): 1274-81, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25060740

RESUMO

Metabolism fuels all of life's activities, from biochemical reactions to ecological interactions. According to two intensely debated theories, body size affects metabolism via geometrical influences on the transport of resources and wastes. However, these theories differ crucially in whether the size dependence of metabolism is derived from material transport across external surfaces, or through internal resource-transport networks. We show that when body shape changes during growth, these models make opposing predictions. These models are tested using pelagic invertebrates, because these animals exhibit highly variable intraspecific scaling relationships for metabolic rate and body shape. Metabolic scaling slopes of diverse integument-breathing species were significantly positively correlated with degree of body flattening or elongation during ontogeny, as expected from surface area theory, but contradicting the negative correlations predicted by resource-transport network models. This finding explains strong deviations from predictions of widely adopted theory, and underpins a new explanation for mass-invariant metabolic scaling during ontogeny in animals and plants.


Assuntos
Tamanho Corporal , Metabolismo Energético , Invertebrados/crescimento & desenvolvimento , Invertebrados/metabolismo , Animais , Modelos Biológicos
16.
Am Nat ; 183(4): E118-30, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24642502

RESUMO

The metabolic rate of organisms may be viewed as a basic property from which other vital rates and many ecological patterns emerge and that follows a universal allometric mass scaling law, or it may be considered a property of the organism that emerges as a result of the adaptation to the environment, with consequently fewer universal mass scaling properties. Here, we examine the mass scaling of respiration and maximum feeding (clearance and ingestion rates) and growth rates of heterotrophic pelagic organisms over an ∼10(15) range in body mass. We show that clearance and respiration rates have life-form-dependent allometries that have similar scaling but different intercepts, such that the mass-specific rates converge on a rather narrow size-independent range. In contrast, ingestion and growth rates follow a near-universal taxa-independent ∼3/4 mass scaling power law. We argue that the declining mass-specific clearance rates with size within taxa is related to the inherent decrease in feeding efficiency of any particular feeding mode. The transitions between feeding mode and simultaneous transitions in clearance and respiration rates may then represent adaptations to the food environment and be the result of the optimization of trade-offs that allow sufficient feeding and growth rates to balance mortality.


Assuntos
Organismos Aquáticos/crescimento & desenvolvimento , Tamanho Corporal , Ingestão de Alimentos/fisiologia , Respiração , Animais , Biometria , Peixes/crescimento & desenvolvimento , Cifozoários/crescimento & desenvolvimento , Zooplâncton/crescimento & desenvolvimento
17.
Proc Biol Sci ; 280(1768): 20131546, 2013 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-23945691

RESUMO

The accumulation of body mass, as growth, is fundamental to all organisms. Being able to understand which model(s) best describe this growth trajectory, both empirically and ultimately mechanistically, is an important challenge. A variety of equations have been proposed to describe growth during ontogeny. Recently, the West Brown Enquist (WBE) equation, formulated as part of the metabolic theory of ecology, has been proposed as a universal model of growth. This equation has the advantage of having a biological basis, but its ability to describe invertebrate growth patterns has not been well tested against other, more simple models. In this study, we collected data for 58 species of marine invertebrate from 15 different taxa. The data were fitted to three growth models (power, exponential and WBE), and their abilities were examined using an information theoretic approach. Using Akaike information criteria, we found changes in mass through time to fit an exponential equation form best (in approx. 73% of cases). The WBE model predominantly overestimates body size in early ontogeny and underestimates it in later ontogeny; it was the best fit in approximately 14% of cases. The exponential model described growth well in nine taxa, whereas the WBE described growth well in one of the 15 taxa, the Amphipoda. Although the WBE has the advantage of being developed with an underlying proximate mechanism, it provides a poor fit to the majority of marine invertebrates examined here, including species with determinate and indeterminate growth types. In the original formulation of the WBE model, it was tested almost exclusively against vertebrates, to which it fitted well; the model does not however appear to be universal given its poor ability to describe growth in benthic or pelagic marine invertebrates.


Assuntos
Organismos Aquáticos/crescimento & desenvolvimento , Invertebrados/crescimento & desenvolvimento , Modelos Biológicos , Animais , Tamanho Corporal , Especificidade da Espécie
18.
ISME J ; 7(1): 28-36, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22832346

RESUMO

The temperature-size rule (TSR) is an intraspecific phenomenon describing the phenotypic plastic response of an organism size to the temperature: individuals reared at cooler temperatures mature to be larger adults than those reared at warmer temperatures. The TSR is ubiquitous, affecting >80% species including uni- and multicellular groups. How the TSR is established has received attention in multicellular organisms, but not in unicells. Further, conceptual models suggest the mechanism of size change to be different in these two groups. Here, we test these theories using the protist Cyclidium glaucoma. We measure cell sizes, along with population growth during temperature acclimation, to determine how and when the temperature-size changes are achieved. We show that mother and daughter sizes become temporarily decoupled from the ratio 2:1 during acclimation, but these return to their coupled state (where daughter cells are half the size of the mother cell) once acclimated. Thermal acclimation is rapid, being completed within approximately a single generation. Further, we examine the impact of increased temperatures on carrying capacity and total biomass, to investigate potential adaptive strategies of size change. We demonstrate no temperature effect on carrying capacity, but maximum supported biomass to decrease with increasing temperature.


Assuntos
Oligoimenóforos/citologia , Oligoimenóforos/fisiologia , Aclimatação , Biomassa , Divisão Celular , Temperatura
19.
Proc Natl Acad Sci U S A ; 109(47): 19310-4, 2012 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-23129645

RESUMO

Most ectothermic organisms mature at smaller body sizes when reared in warmer conditions. This phenotypically plastic response, known as the "temperature-size rule" (TSR), is one of the most taxonomically widespread patterns in biology. However, the TSR remains a longstanding life-history puzzle for which no dominant driver has been found. We propose that oxygen supply plays a central role in explaining the magnitude of ectothermic temperature-size responses. Given the much lower oxygen availability and greater effort required to increase uptake in water vs. air, we predict that the TSR in aquatic organisms, especially larger species with lower surface area-body mass ratios, will be stronger than in terrestrial organisms. We performed a meta-analysis of 1,890 body mass responses to temperature in controlled experiments on 169 terrestrial, freshwater, and marine species. This reveals that the strength of the temperature-size response is greater in aquatic than terrestrial species. In animal species of ∼100 mg dry mass, the temperature-size response of aquatic organisms is 10 times greater than in terrestrial organisms (-5.0% °C(-1) vs. -0.5% °C(-1)). Moreover, although the size response of small (<0.1 mg dry mass) aquatic and terrestrial species is similar, increases in species size cause the response to become increasingly negative in aquatic species, as predicted, but on average less negative in terrestrial species. These results support oxygen as a major driver of temperature-size responses in aquatic organisms. Further, the environment-dependent differences parallel latitudinal body size clines, and will influence predicted impacts of climate warming on food production, community structure, and food-web dynamics.


Assuntos
Organismos Aquáticos/fisiologia , Tamanho Corporal/fisiologia , Temperatura , Animais , Peso Corporal , Água Doce , Água do Mar , Especificidade da Espécie
20.
Am Nat ; 178(5): 668-78, 2011 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22030735

RESUMO

Growth and development rates are fundamental to all living organisms. In a warming world, it is important to determine how these rates will respond to increasing temperatures. It is often assumed that the thermal responses of physiological rates are coupled to metabolic rate and thus have the same temperature dependence. However, the existence of the temperature-size rule suggests that intraspecific growth and development are decoupled. Decoupling of these rates would have important consequences for individual species and ecosystems, yet this has not been tested systematically across a range of species. We conducted an analysis on growth and development rate data compiled from the literature for a well-studied group, marine pelagic copepods, and use an information-theoretic approach to test which equations best describe these rates. Growth and development rates were best characterized by models with significantly different parameters: development has stronger temperature dependence than does growth across all life stages. As such, it is incorrect to assume that these rates have the same temperature dependence. We used the best-fit models for these rates to predict changes in organism mass in response to temperature. These predictions follow a concave relationship, which complicates attempts to model the impacts of increasing global temperatures on species body size.


Assuntos
Copépodes/crescimento & desenvolvimento , Modelos Biológicos , Animais , Tamanho Corporal , Ecossistema , Feminino , Masculino , Temperatura , Zooplâncton/crescimento & desenvolvimento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...