Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nanotechnology ; 19(30): 305705, 2008 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-21828772

RESUMO

Muscovite mica is an important mineral that has become a standard substrate, due to its easy cleavage along the {001} planes, revealing a very flat surface that is compatible with many biological materials. Here we study mica surfaces by dynamic atomic force microscopy (AFM) operated in the non-contact mode (NC-AFM) under ultra-high vacuum (UHV) conditions. Surfaces produced by cleaving in UHV cannot be imaged with NC-AFM due to large surface charges; however, cleavage in air yields much less surface charge and allows for NC-AFM imaging. We present highly resolved NC-AFM images of air-cleaved mica surfaces revealing a rough morphology originating from a high density of nanometre-sized particles. Among these particles, we find regularly shaped structures indicating the growth of crystallites on the surface. The contamination layer cannot be removed by degassing in UHV; even prolonged heating at a temperature of 560 K under UHV conditions does not yield an atomically flat surface.

2.
Nanotechnology ; 17(7): S148-54, 2006 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-21727406

RESUMO

Atomic scale manipulation on insulating surfaces is one of the great challenges of non-contact atomic force microscopy. Here we demonstrate lateral manipulation of defects occupying single ionic sites on a calcium fluoride (111)-surface. Defects stem from the interaction of the residual gas with the surface. The process of surface degradation is briefly discussed. Manipulation is performed over a wide range of path lengths ranging from tens of nanometres down to a few lattice constants. We introduce a simple manipulation protocol based on line-by-line scanning of a surface region containing defects to be manipulated, and record tip-surface distance and cantilever resonance frequency detuning as a function of the manipulation pathway in real time. We suggest a hopping model to describe manipulation where the tip-defect interaction is governed by repulsive forces.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...