Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Langmuir ; 39(51): 19016-19026, 2023 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-38085956

RESUMO

With excellent properties such as great flexibility, outstanding chemical resistance, and superb mechanical strength, two-part polyurethane (2K PU) adhesives have been widely applied in many applications, including those in transportation and construction. Despite the extensive use, their adhesion to nonpolar polymer substrates still needs to be improved and has been widely studied. The incorporation of silane molecules and the use of plasma treatment on substrate surfaces are two popular methods to increase the adhesion of 2K PU adhesives, but their detailed adhesion enhancement mechanisms are still largely unknown. In this research, sum frequency generation (SFG) vibrational spectroscopy was used to probe the influence of added or coated silanes on the interfacial structure at the buried polypropylene (PP)/2K PU adhesive interface in situ. How plasma treatment on PP could improve adhesion was also investigated. To achieve maximum adhesion, two methods to involve silanes were studied. In the first method, silanes were directly mixed with the 2K PU adhesive before use. In the second method, silane molecules were spin-coated onto the PP substrate before the PU adhesive applied. It was found that the first method could not improve the 2K PU adhesion to PP, while the second method could substantially enhance such adhesion. SFG studies demonstrated that with the second method silane molecules chemically reacted at the interface to connect PP and 2K PU adhesive to improve the adhesion. With the first method, silane molecules could not effectively diffuse to the interface to enhance adhesion. In this research, plasma treatment was also found to be a useful method to improve the adhesion of the 2K PU adhesive to nonpolar polymer materials.

2.
Sci Adv ; 9(28): eadh5331, 2023 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-37436998

RESUMO

Industrial heterogeneous catalysts show high performance coupled with high material complexity. Deconvoluting this complexity into simplified models eases mechanistic studies. However, this approach dilutes the relevance because models are often less performing. We present a holistic approach to reveal the origin of high performance without losing the relevance by pivoting the system at an industrial benchmark. Combining kinetic and structural analyses, we show how the performance of Bi-Mo-Co-Fe-K-O industrial acrolein catalysts occurs. The surface BiMoO ensembles decorated with K supported on ß-Co1-xFexMoO4 perform the propene oxidation, while the K-doped iron molybdate pools electrons to activate dioxygen. The nanostructured vacancy-rich and self-doped bulk phases ensure the charge transport between the two active sites. The features particular to the real system enable the high performance.

3.
RSC Adv ; 13(29): 19721-19724, 2023 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-37448780

RESUMO

This is a reply to the Comment of Okhrimenko et al. in the same issue of RSC Advances. We discuss the arguments brought forward by said authors, oppose their objections and show the unchanged validity of our results.

4.
Langmuir ; 39(9): 3273-3285, 2023 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-36808974

RESUMO

One-part (1K) polyurethane (PU) adhesive has excellent bulk strength and environmental resistance. It is therefore widely used in many fields, such as construction, transportation, and flexible lamination. However, when contacting non-polar polymer materials, the poor adhesion of 1K PU adhesive may not be able to support its outdoor applications. To solve this problem, plasma treatment of the non-polar polymer surface has been utilized to improve adhesion between the polymer and 1K PU adhesive. The detailed mechanisms of adhesion enhancement of the 1K PU adhesive caused by plasma treatment on polymer substrates have not been studied extensively because adhesion is a property of buried interfaces which are difficult to probe. In this study, sum frequency generation (SFG) vibrational spectroscopy was used to investigate the buried PU/polypropylene (PP) interfaces in situ nondestructively. Fourier-transform infrared spectroscopy, the X-ray diffraction technique, and adhesion tests were used as supplemental methods to SFG in the study. The 1K PU adhesive is a moisture-curing adhesive and usually needs several days to be fully cured. Here, time-dependent SFG experiments were conducted to monitor the molecular behaviors at the buried 1K PU adhesive/PP interfaces during the curing process. It was found that the PU adhesives underwent rearrangement during the curing process with functional groups gradually becoming ordered at the interface. Stronger adhesion between the plasma-treated PP substrate and the 1K PU adhesive was observed, which was achieved by the interfacial chemical reactions and a more rigid interface. Annealing the samples increased the reaction speed and enhanced the bulk PU strength with higher crystallinity. In this research, molecular mechanisms of adhesion enhancement of the 1K PU adhesive caused by the plasma treatment on PP and by annealing the PU/PP samples were elucidated.

6.
Chem Res Toxicol ; 34(3): 780-792, 2021 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-33464877

RESUMO

The hazard potential, including carcinogenicity, of inhaled man-made vitreous fibers (MMVFs) is correlated with their biodurability in the lung, as prerequisite for biopersistence. Abiotic dissolution testing serves to predict biodurability. We re-analyzed the International Agency for Research on Cancer Monograph on MMVFs and found that the correlation between in vivo biopersistence and abiotic dissolution presented therein confounded different simulant fluids and further confounded evaluation of leaching vs structural elements. These are critical choices for abiotic dissolution testing, as are binder removal and the rate of the flow that removes ions during testing. Therefore, we experimentally demonstrated how fluid composition and binder affect abiotic dissolution of a representative stone wool MMVF. We compared six simulant fluids (all pH 4.5, reflecting the environment of alveolar macrophage lysosomes) that differed in organic acids, which have a critical role in their ability to modulate the formation of Si-rich gels on the fiber surfaces. Removing the binder accelerates the average dissolution rate by +104% (max. + 273%) across the fluids by suppression of gel formation. Apart from the high-citrate fluid that predicted a 10-fold faster dissolution than is observed in vivo, none of the five other fluids resulted in dissolution rates above 400 ng/cm2/h, the limit associated with the exoneration from classification for carcinogenicity in the literature. These findings were confirmed with and without binder. For corroboration, five more stone wool MMVFs were assessed with and without binder in one specific fluid. Again, the presence of the binder caused gel formation and reduced dissolution rates. To enhance the reliability and robustness of abiotic predictions of biodurability, we recommend replacing the critically influential citric acid in pH 4.5 fluids with other organic acids. Also, future studies should consider structural transformations of the fibers, including changes in fiber length, fiber composition, and reprecipitation of gel layers.


Assuntos
Líquidos Corporais/metabolismo , Macrófagos Alveolares/metabolismo , Fibras Minerais/análise , Animais , Líquidos Corporais/química , Humanos , Concentração de Íons de Hidrogênio , Lisossomos/química , Lisossomos/metabolismo , Macrófagos Alveolares/química
7.
RSC Adv ; 11(62): 39545-39552, 2021 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-35492464

RESUMO

Biodurability of man-made vitreous fibres (MMVF) is often measured on naked fibres, i.e. fibres devoid of the phenol-urea-formaldehyde (PUF) binder that is sprayed and baked on the commercial product to reduce dustiness and to provide mechanical strength to fibre mats. This simplification of the hazard assessment relies on the assumption that the binder would not actually coat the entire fibre surface, but would occur only at the touching points where two fibres are glued together. We challenged this assumption by using surface analysis by X-ray photoelectron spectroscopy (XPS) and Time-of-Flight Secondary Ion mass spectrometry (ToF-SIMS). We analysed commercial stone wool MMVF sourced from Denmark, United Kingdom and Germany. XPS as well as ToF-SIMS-mapping combined with gas-cluster-ion-sputtering revealed that all mineral fibres investigated show a complete layer of organics over the surface of the fibres with only a few defects: before sputtering, organic components (PUF binder and oils) uniformly cover the spatial structures; only after sputtering, the inorganic components of the stone wool emerge on the visible surfaces. A preferential localisation of PUF binder on fibre-to-fibre touching points or as droplets was not observable. We finally explored the correlation to dissolution rates, but found that total PUF binder content and the experimentally determined thickness of the PUF binder layer are not sufficient to predict dissolution rates, which instead must consider chemical composition and other properties. In summary, none of the investigated stone wool fibre surfaces were uncoated by the PUF binder.

8.
Nat Rev Chem ; 4(5): 257-268, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-37127980

RESUMO

In contrast to natural polymers, which have existed for billions of years, the first well-understood synthetic polymers date back to just over one century ago. Nevertheless, this relatively short period has seen vast progress in synthetic polymer chemistry, which can now afford diverse macromolecules with varying structural complexities. To keep pace with this synthetic progress, there have been commensurate developments in analytical chemistry, where mass spectrometry has emerged as the pre-eminent technique for polymer analysis. This Perspective describes present challenges associated with the mass-spectrometric analysis of synthetic polymers, in particular the desorption, ionization and structural interrogation of high-molar-mass macromolecules, as well as strategies to lower spectral complexity. We critically evaluate recent advances in technology in the context of these challenges and suggest how to push the field beyond its current limitations. In this context, the increasingly important role of high-resolution mass spectrometry is emphasized because of its unrivalled ability to describe unique species within polymer ensembles, rather than to report the average properties of the ensemble.

9.
J Nanopart Res ; 15(4): 1504, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23596358

RESUMO

ABSTRACT: Nanocomposite materials may be considered as a low-risk application of nanotechnology, if the nanofillers remain embedded throughout the life-cycle of the products in which they are embedded. We hypothesize that release of free CNTs occurs by a combination of mechanical stress and chemical degradation of the polymer matrix. We experimentally address limiting cases: Mechanically released fragments may show tubular protrusions on their surface. Here we identify these protrusions unambiguously as naked CNTs by chemically resolved microscopy and a suitable preparation protocol. By size-selective quantification of fragments we establish as a lower limit that at least 95 % of the CNTs remain embedded. Contrary to classical fiber composite approaches, we link this phenomenon to matrix materials with only a few percent elongation at break, predicting which materials should still cover their CNT nanofillers after machining. Protruding networks of CNTs remain after photochemical degradation of the matrix, and we show that it takes the worst case combinations of weathering plus high-shear wear to release free CNTs in the order of mg/m2/year. Synergy of chemical degradation and mechanical energy input is identified as the priority scenario of CNT release, but its lab simulation by combined methods is still far from real-world validation.

10.
Nanoscale ; 5(1): 369-80, 2013 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-23172121

RESUMO

Intended for use in high performance applications where electrical conductivity is required, we developed a CNT-TPU composite. Such a composite can be prepared by melt processing (extrusion) on an industrial scale. Due to the known hazard upon inhalation of CNTs, we assessed three degradation scenarios that may lead to the release of CNTs from the composite: normal use, machining and outdoor weathering. Unexpectedly, we find that the relative softness of the material actually enhances the embedding of CNTs also in its degradation fragments. A release of free CNTs was not detected under any condition using several detection methods. However, since machining may induce a high acute dose of human exposure, we assessed the cytotoxicity potential of released fragments in the in vitro model of precision-cut lung slices, and found no additional toxicity due to the presence of CNTs. At very low rates over years, weathering degrades the polymer matrix as expected for polyurethanes, thus exposing a network of entangled CNTs. In a preliminary risk assessment, we conclude that this material is safe for humans in professional and consumer use.


Assuntos
Pulmão/efeitos dos fármacos , Pulmão/patologia , Nanotubos de Carbono/química , Nanotubos de Carbono/toxicidade , Animais , Cristalização/métodos , Módulo de Elasticidade , Condutividade Elétrica , Feminino , Humanos , Técnicas In Vitro , Teste de Materiais , Tamanho da Partícula , Ratos , Ratos Wistar
11.
Small ; 7(16): 2384-95, 2011 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-21671434

RESUMO

Nanocomposites are the dominating class of nanomaterials to come into consumer contact, and were in general assumed to pose low risk. The first data is now emerging on the exposure from nanocomposites, but little is yet known about their hypothetical nanospecific physiological effects, giving ample room for speculation. For the first time, this comprehensive study addresses these aspects in a systematic series of thermoplastic and cementitious nanocomposite materials. Earlier reports that 'chalking', the release of pigments from weathered paints, also occurs for nanocomposites, are confirmed. In contrast, mechanical forces by normal consumer use or do-it-yourself sanding do not disrupt nanofillers (nanoparticles or nanofibers) from the matrix. Detailed evidence is provided for the nature of the degradation products: no free nanofillers are detected up to the detection threshold of 100 ppm. Sanding powders measuring 1 to 80 µm in diameter are identified with the original material, still containing the nanofillers. The potential hazard from aerosols generated by sanding nanocomposites up to the nuisance dust limit is also investigated. In-vivo instillation in rats is used to quantify physiological effects on degradation products from abraded nanocomposites, in comparison to the abraded matrix without nanofiller and to the pure nanofiller. In this pioneering and preliminary evaluation, the hazards cannot be distinguished with or without nanofiller.


Assuntos
Adesivos/toxicidade , Aerossóis/toxicidade , Manufaturas/toxicidade , Nanocompostos/química , Nanocompostos/toxicidade , Material Particulado/toxicidade , Adesivos/química , Aerossóis/química , Animais , Teste de Materiais/métodos , Nanocompostos/ultraestrutura , Ratos , Ratos Wistar , Medição de Risco
12.
Anal Bioanal Chem ; 400(7): 2031-40, 2011 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-21461987

RESUMO

By combining several surface analytical tools, we show that an adsorbed layer of the protein H*Protein B prevents the adsorption of secondary proteins bovine serum albumin, casein, or collagen at low-salinity conditions and at pH 8. H*Protein B is an industrially producible fusion protein of the hydrophobin family, known for its high interfacial activity. While applications of hydrophobin have been reported to facilitate adhesion of proteins under different pH conditions, careful analysis by quartz-crystal microbalance and ellipsometry prove that no additional adsorption can be found on top of the H*Protein B layer in this study. Surface analysis by X-ray photoelectron spectroscopy and secondary ion mass spectrometry proves that the hydrophobin layer stays intact even after hours of exposure to solutions of the secondary proteins and that no exchange of proteins can be detected.


Assuntos
Proteínas/química , Adsorção , Análise Espectral , Propriedades de Superfície , Raios X
13.
Langmuir ; 25(18): 10764-7, 2009 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-19415909

RESUMO

Air-cleaved mica surfaces exhibit a high density of nanometer or micrometer size particles that have been ascribed to potassium carbonate formed as a reaction product of carbonaceous gases with potassium ions. Unambiguous evidence for this assignment has, however, never been presented. We study air-cleaved mica surfaces by high-resolution noncontact atomic force microscopy (NC-AFM) in ultrahigh vacuum to reveal the detailed structure of such precipitates on the surface. Among a large number of irregularly shaped surface structures, we find flat, hexagonally shaped islands exhibiting two different patterns on their surfaces, namely a rectangular atomic corrugation pattern and a hexagonal moire structure. The unit cell of the rectangular pattern corresponds to the dimensions of the potassium carbonate bulk structure and is found on high crystallites. The moire structure solely appears on very flat islands and is caused by the interference of the potassium carbonate lattice periodicity and the lattice periodicity of the underlying mica substrate. Both results strongly point to the presence of potassium carbonate crystallites on air-cleaved mica surfaces.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...