Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 10(1): 921, 2019 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-30796223

RESUMO

With increasing ring-crossing number (c), knot theory predicts an exponential increase in the number of topologically different links of these interlocking structures, even for structures with the same ring number (n) and c. Here, we report the selective construction of two topologies of 12-crossing peptide [4]catenanes (n = 4, c = 12) from metal ions and pyridine-appended tripeptide ligands. Two of the 100 possible topologies for this structure are selectively created from related ligands in which only the tripeptide sequence is changed: one catenane has a T2-tetrahedral link and the other a three-crossed tetrahedral link. Crystallographic studies illustrate that a conformational difference in only one of the three peptide residues in the ligand causes the change in the structure of the final tetrahedral link. Our results thus reveal that peptide-based folding and assembly can be used for the facile bottom-up construction of 3D molecular objects containing polyhedral links.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...