Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Affect Sci ; 3(4): 713-733, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36519141

RESUMO

Social stress is associated with depression and anxiety, physiological disruptions, and altered brain morphology in central stress circuitry across development. Environmental enrichment strategies may improve responses to social stress. Socially monogamous prairie voles exhibit analogous social and emotion-related behaviors to humans, with potential translational insight into interactions of social stress, age, and environmental enrichment. This study explored the effects of social isolation and environmental enrichment on behaviors related to depression and anxiety, physiological indicators of stress, and dendritic structural changes in amygdala and hippocampal subregions in young adult and aging prairie voles. Forty-nine male prairie voles were assigned to one of six groups divided by age (young adult vs. aging), social structure (paired vs. isolated), and housing environment (enriched vs. non-enriched). Following 4 weeks of these conditions, behaviors related to depression and anxiety were investigated in the forced swim test and elevated plus maze, body and adrenal weights were evaluated, and dendritic morphology analyses were conducted in hippocampus and amygdala subregions. Environmental enrichment decreased immobility duration in the forced swim test, increased open arm exploration in the elevated plus maze, and reduced adrenal/body weight ratio in aging and young adult prairie voles. Age and social isolation influenced dendritic morphology in the basolateral amygdala. Age, but not social isolation, influenced dendritic morphology in the hippocampal dentate gyrus. Environmental enrichment did not influence dendritic morphology in either brain region. These data may inform interventions to reduce the effects of social stressors and age-related central changes associated with affective behavioral consequences in humans.

2.
Behav Brain Res ; 416: 113572, 2022 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-34499940

RESUMO

Social isolation and the disruption of established social bonds contribute to several physical and psychological health issues. Animal models are a useful tool for investigating consequences of social stress, including social isolation. The current study examined morphological changes in the basolateral amygdala (BLA) and affect-related behavioral and endocrine changes due to prolonged social isolation, using the translational prairie vole model (Microtus ochrogaster). Adult male prairie voles were either socially paired (control) or isolated from a same-sex sibling for 4 weeks. Following this 4-week period, a subset of animals (n = 6 per condition) underwent a series of behavioral tasks to assess affective, social, and stress-coping behaviors. Plasma was collected following the last behavioral task for stressor-induced endocrine assays. Brains were collected from a separate subset of animals (n = 10 per condition) following the 4-week social housing period for dendritic structure analyses in the BLA. Social isolation was associated with depressive- and anxiety-like behaviors, as well as elevated oxytocin reactivity following a social stressor. Social isolation was also associated with altered amount of dendritic material in the BLA, with an increase in spine density. These results provide further evidence that social isolation may lead to the development of affective disorders. Dysfunction in the oxytocin system and BLA remodeling may mediate these behavioral changes. Further research will promote an understanding of the connections between oxytocin function and structural changes in the BLA in the context of social stress. This research can facilitate novel treatments for alleviating or preventing behavioral and physiological consequences of social stressors in humans.


Assuntos
Arvicolinae/fisiologia , Complexo Nuclear Basolateral da Amígdala/efeitos dos fármacos , Ocitocina/farmacologia , Isolamento Social/psicologia , Estresse Psicológico/fisiopatologia , Análise e Desempenho de Tarefas , Animais , Comportamento Animal/fisiologia , Corticosterona/sangue , Dendritos , Masculino , Sistemas Neurossecretores/efeitos dos fármacos
3.
Front Integr Neurosci ; 13: 70, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31866840

RESUMO

Naked mole-rats (Heterocephalus glaber) are subterranean rodents that utilize their incisors for feeding, chisel-tooth digging of complex tunnel systems, social interactions, and defense in their eusocial colony structure. Previous studies have shown that naked mole-rats have morphological and anatomical adaptations that predict strong bite forces, namely, skulls that are relatively tall and wide, in addition to impressive masticatory musculature. However, no studies to date have directly measured bite force in this species or analyzed the relationship between bite force and social caste. In the current study, we assessed adult naked mole-rat maximum bite force in relation to body mass, in addition to considering each animal's position within the eusocial hierarchy (i.e., dominant versus subordinate). Each animal was permitted to freely interact with a piezo-resistive bite force sensor. Our results showed that bite force was correlated with body mass in subordinate but not in dominant naked mole-rats, and that subordinate animals exhibited a shorter latency in producing their first bite. Maximum bite force was significantly influenced by caste. In comparing bite force with available data from previous studies across 82 additional mammalian species, subordinate naked mole-rats exhibited a bite force that was 65% higher than predicted for their body size, comparable to Tasmanian devils and exceeding bite force values for all of the carnivorans included for comparison. These results supported the hypothesis that the naked mole-rat's bite force would exceed predictions based on body size due to the behavioral importance and specialization of the naked mole-rat incisors. This study provides insight into the differences in bite force across species, and the significant role that social and ecological factors might play in the evolutionary relationship between bite force performance and underlying anatomical structures.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...