Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 60
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
Genome Biol ; 24(1): 187, 2023 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-37582787

RESUMO

BACKGROUND: The international Dog10K project aims to sequence and analyze several thousand canine genomes. Incorporating 20 × data from 1987 individuals, including 1611 dogs (321 breeds), 309 village dogs, 63 wolves, and four coyotes, we identify genomic variation across the canid family, setting the stage for detailed studies of domestication, behavior, morphology, disease susceptibility, and genome architecture and function. RESULTS: We report the analysis of > 48 M single-nucleotide, indel, and structural variants spanning the autosomes, X chromosome, and mitochondria. We discover more than 75% of variation for 239 sampled breeds. Allele sharing analysis indicates that 94.9% of breeds form monophyletic clusters and 25 major clades. German Shepherd Dogs and related breeds show the highest allele sharing with independent breeds from multiple clades. On average, each breed dog differs from the UU_Cfam_GSD_1.0 reference at 26,960 deletions and 14,034 insertions greater than 50 bp, with wolves having 14% more variants. Discovered variants include retrogene insertions from 926 parent genes. To aid functional prioritization, single-nucleotide variants were annotated with SnpEff and Zoonomia phyloP constraint scores. Constrained positions were negatively correlated with allele frequency. Finally, the utility of the Dog10K data as an imputation reference panel is assessed, generating high-confidence calls across varied genotyping platform densities including for breeds not included in the Dog10K collection. CONCLUSIONS: We have developed a dense dataset of 1987 sequenced canids that reveals patterns of allele sharing, identifies likely functional variants, informs breed structure, and enables accurate imputation. Dog10K data are publicly available.


Assuntos
Lobos , Cães , Animais , Lobos/genética , Mapeamento Cromossômico , Alelos , Polimorfismo de Nucleotídeo Único , Nucleotídeos , Demografia
3.
Cancers (Basel) ; 14(2)2022 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-35053440

RESUMO

Mucosal melanoma (MM) is a rare, aggressive clinical cancer. Despite recent advances in genetics and treatment, the prognosis of MM remains poor. Canine MM offers a relevant spontaneous and immunocompetent model to decipher the genetic bases and explore treatments for MM. We performed an integrative genomic and transcriptomic analysis of 32 canine MM samples, which identified two molecular subgroups with a different microenvironment and structural variant (SV) content. The overexpression of genes related to the microenvironment and T-cell response was associated with tumors harboring a lower content of SVs, whereas the overexpression of pigmentation-related pathways and oncogenes, such as TERT, was associated with a high SV burden. Using whole-genome sequencing, we showed that focal amplifications characterized complex chromosomal rearrangements targeting oncogenes, such as MDM2 or CDK4, and a recurrently amplified region on canine chromosome 30. We also demonstrated that the genes TRPM7, GABPB1, and SPPL2A, located in this CFA30 region, play a role in cell proliferation, and thus, may be considered as new candidate oncogenes for human MM. Our findings suggest the existence of two MM molecular subgroups that may benefit from dedicated therapies, such as immune checkpoint inhibitors or targeted therapies, for both human and veterinary medicine.

4.
Ecol Evol ; 12(8): e9238, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37265549

RESUMO

The Chauvet-Pont-d'Arc Cave (Ardèche, France) contains some of the oldest Paleolithic paintings recorded to date, as well as thousands of bones of the extinct cave bear, and some remains and footprints of other animals. As part of the interdisciplinary research project devoted to this reference cave site, we analyzed a coprolite collected within the deep cave. AMS radiocarbon dating of bone fragments from the coprolite yielded an age of 30,450 ± 550 RC yr. BP (AAR-19656; 36,150-34,000 cal BP), similar to ages assigned to Paleolithic artwork and cave bear remains from the same cave sector. Using high-throughput shotgun DNA sequencing, we demonstrated a high abundance of canid DNA and lesser amounts of DNA from the extinct cave bear. We interpret the sample as feces from a canid that had consumed cave bear tissue. The high amount of canid DNA allowed us to reconstruct a complete canid mitochondrial genome sequence (average coverage: 83×) belonging to a deeply divergent clade of extinct mitochondrial wolf lineages that are most closely related to coeval (~35 ka) Belgian wolves. Analysis of the nuclear genome yielded a similar coverage for the X chromosome (2.4×) and the autosomes (range: 2.3-3.2×), indicating that the Chauvet canid was a female. Comparing the relationship of the nuclear genome of this specimen with that of a variety of canids, we found it more closely related to gray wolves' genomes than to other wild canid or dog genomes, especially wolf genomes from Europe and the Middle East. We conclude that the coprolite is feces from an animal within an extinct wolf lineage. The consumption of cave bear by this wolf likely explains its intrusion into the dark cave sectors and sheds new light on the paleoecology of a major cave site.

5.
Genes (Basel) ; 12(6)2021 05 30.
Artigo em Inglês | MEDLINE | ID: mdl-34070911

RESUMO

The domestic dog has evolved to be an important biomedical model for studies regarding the genetic basis of disease, morphology and behavior. Genetic studies in the dog have relied on a draft reference genome of a purebred female boxer dog named "Tasha" initially published in 2005. Derived from a Sanger whole genome shotgun sequencing approach coupled with limited clone-based sequencing, the initial assembly and subsequent updates have served as the predominant resource for canine genetics for 15 years. While the initial assembly produced a good-quality draft, as with all assemblies produced at the time, it contained gaps, assembly errors and missing sequences, particularly in GC-rich regions, which are found at many promoters and in the first exons of protein-coding genes. Here, we present Dog10K_Boxer_Tasha_1.0, an improved chromosome-level highly contiguous genome assembly of Tasha created with long-read technologies that increases sequence contiguity >100-fold, closes >23,000 gaps of the CanFam3.1 reference assembly and improves gene annotation by identifying >1200 new protein-coding transcripts. The assembly and annotation are available at NCBI under the accession GCF_000002285.5.


Assuntos
Cães/genética , Genoma , Animais , Mapeamento de Sequências Contíguas , Anotação de Sequência Molecular
6.
Proc Natl Acad Sci U S A ; 118(11)2021 03 16.
Artigo em Inglês | MEDLINE | ID: mdl-33836575

RESUMO

Technological advances have allowed improvements in genome reference sequence assemblies. Here, we combined long- and short-read sequence resources to assemble the genome of a female Great Dane dog. This assembly has improved continuity compared to the existing Boxer-derived (CanFam3.1) reference genome. Annotation of the Great Dane assembly identified 22,182 protein-coding gene models and 7,049 long noncoding RNAs, including 49 protein-coding genes not present in the CanFam3.1 reference. The Great Dane assembly spans the majority of sequence gaps in the CanFam3.1 reference and illustrates that 2,151 gaps overlap the transcription start site of a predicted protein-coding gene. Moreover, a subset of the resolved gaps, which have an 80.95% median GC content, localize to transcription start sites and recombination hotspots more often than expected by chance, suggesting the stable canine recombinational landscape has shaped genome architecture. Alignment of the Great Dane and CanFam3.1 assemblies identified 16,834 deletions and 15,621 insertions, as well as 2,665 deletions and 3,493 insertions located on secondary contigs. These structural variants are dominated by retrotransposon insertion/deletion polymorphisms and include 16,221 dimorphic canine short interspersed elements (SINECs) and 1,121 dimorphic long interspersed element-1 sequences (LINE-1_Cfs). Analysis of sequences flanking the 3' end of LINE-1_Cfs (i.e., LINE-1_Cf 3'-transductions) suggests multiple retrotransposition-competent LINE-1_Cfs segregate among dog populations. Consistent with this conclusion, we demonstrate that a canine LINE-1_Cf element with intact open reading frames can retrotranspose its own RNA and that of a SINEC_Cf consensus sequence in cultured human cells, implicating ongoing retrotransposon activity as a driver of canine genetic variation.


Assuntos
Cães/genética , Sequência Rica em GC , Genoma , Sequências Repetitivas Dispersas , Animais , Cães/classificação , Elementos Nucleotídeos Longos e Dispersos , Elementos Nucleotídeos Curtos e Dispersos , Especificidade da Espécie
7.
Pigment Cell Melanoma Res ; 33(6): 814-825, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32558164

RESUMO

In the feline Donskoy breed, a phenotype that breeders call "pink-eye," with associated light-brown skin, yellow irises and red-eye effect, has been described. Genealogical data indicated an autosomal recessive inheritance pattern. A single candidate region was identified by genome-wide association study and SNP-based homozygosity mapping. Within that region, we further identified HPS5 (HPS5 Biogenesis Of Lysosomal Organelles Complex 2 Subunit 2) as a strong candidate gene, since HPS5 variants have been identified in humans and animals with Hermansky-Pudlak syndrome 5 or oculocutaneous albinism. A homozygous c.2571-1G>A acceptor splice-site variant located in intron 16 of HPS5 was identified in pink-eye cats. Segregation of the variant was 100% consistent with the inheritance pattern. Genotyping of 170 cats from 19 breeds failed to identify a single carrier in non-Donskoy cats. The c.2571-1G>A variant leads to HPS5 exon-16 splicing that is predicted to produce a 52 amino acids in-frame deletion in the protein. These results support an association of the pink-eye phenotype with the c.2571-1G>A variant. The pink-eye Donskoy cat extends the panel of reported HPS5 variants and offers an opportunity for in-depth exploration of the phenotypic consequences of a new HPS5 variant.


Assuntos
Albinismo Oculocutâneo/genética , Proteínas de Transporte/genética , Sítios de Splice de RNA/genética , Alelos , Animais , Sequência de Bases , Gatos , Cromossomos de Mamíferos/genética , Modelos Animais de Doenças , Éxons/genética , Loci Gênicos , Predisposição Genética para Doença , Estudo de Associação Genômica Ampla , Homozigoto , Humanos , Camundongos , Fenótipo , Polimorfismo de Nucleotídeo Único/genética , Splicing de RNA/genética
8.
Int J Cancer ; 147(6): 1657-1665, 2020 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-32212266

RESUMO

In humans, histiocytic sarcoma (HS) is an aggressive cancer involving histiocytes. Its rarity and heterogeneity explain that treatment remains a challenge. Sharing high clinical and histopathological similarities with human HS, the canine HS is conversely frequent in specific breeds and thus constitutes a unique spontaneous model for human HS to decipher the genetic bases and to explore therapeutic options. We identified sequence alterations in the MAPK pathway in at least 63.9% (71/111) of HS cases with mutually exclusive BRAF (0.9%; 1/111), KRAS (7.2%; 8/111) and PTPN11 (56.75%; 63/111) mutations concentrated at hotspots common to human cancers. Recurrent PTPN11 mutations are associated to visceral disseminated HS subtype in dogs, the most aggressive clinical presentation. We then identified PTPN11 mutations in 3/19 (15.7%) human HS patients. Thus, we propose PTPN11 mutations as key events for a specific subset of human and canine HS: the visceral disseminated form. Finally, by testing drugs targeting the MAPK pathway in eight canine HS cell lines, we identified a better anti-proliferation activity of MEK inhibitors than PTPN11 inhibitors in canine HS neoplastic cells. In combination, these results illustrate the relevance of naturally affected dogs in deciphering genetic mechanisms and selecting efficient targeted therapies for such rare and aggressive cancers in humans.


Assuntos
Doenças do Cão/genética , Histiócitos/patologia , Sarcoma Histiocítico/genética , Inibidores de Proteínas Quinases/farmacologia , Proteína Tirosina Fosfatase não Receptora Tipo 11/genética , Adulto , Idoso , Idoso de 80 Anos ou mais , Animais , Biópsia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Criança , Pré-Escolar , Análise Mutacional de DNA , Modelos Animais de Doenças , Doenças do Cão/sangue , Doenças do Cão/patologia , Cães , Ensaios de Seleção de Medicamentos Antitumorais/métodos , Feminino , Sarcoma Histiocítico/tratamento farmacológico , Sarcoma Histiocítico/patologia , Sarcoma Histiocítico/veterinária , Humanos , Lactente , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Sistema de Sinalização das MAP Quinases/genética , Masculino , Pessoa de Meia-Idade , Proteínas Quinases Ativadas por Mitógeno/antagonistas & inibidores , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Mutação , Inibidores de Proteínas Quinases/uso terapêutico , Proteína Tirosina Fosfatase não Receptora Tipo 11/antagonistas & inibidores , Ribonucleases , Proteínas Supressoras de Tumor , Adulto Jovem
9.
Natl Sci Rev ; 6(4): 810-824, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31598383

RESUMO

Dogs are the most phenotypically diverse mammalian species, and they possess more known heritable disorders than any other non-human mammal. Efforts to catalog and characterize genetic variation across well-chosen populations of canines are necessary to advance our understanding of their evolutionary history and genetic architecture. To date, no organized effort has been undertaken to sequence the world's canid populations. The Dog10K Consortium (http://www.dog10kgenomes.org) is an international collaboration of researchers from across the globe who will generate 20× whole genomes from 10 000 canids in 5 years. This effort will capture the genetic diversity that underlies the phenotypic and geographical variability of modern canids worldwide. Breeds, village dogs, niche populations and extended pedigrees are currently being sequenced, and de novo assemblies of multiple canids are being constructed. This unprecedented dataset will address the genetic underpinnings of domestication, breed formation, aging, behavior and morphological variation. More generally, this effort will advance our understanding of human and canine health.

10.
J Neuromuscul Dis ; 6(4): 421-451, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31450509

RESUMO

Dogs have long been used as a biomedical model system and in particular as a preclinical proof of concept for innovative therapies before translation to humans. A recent example of the utility of this animal model is the promising myotubularin gene delivery in boys affected by X-linked centronuclear myopathy after successful systemic, long-term efficient gene therapy in Labrador retrievers. Mostly, this is due to unique features that make dogs an optimal system. The continuous emergence of spontaneous inherited disorders enables the identification of reliable complementary molecular models for human neuromuscular disorders (NMDs). Dogs' characteristics including size, lifespan and unprecedented medical care level allow a comprehensive longitudinal description of diseases. Moreover, the highly similar pathogenic mechanisms with human patients yield to translational robustness. Finally, interindividual phenotypic heterogeneity between dogs helps identifying modifiers and anticipates precision medicine issues.This review article summarizes the present list of molecularly characterized dog models for NMDs and provides an exhaustive list of the clinical and paraclinical assays that have been developed. This toolbox offers scientists a sensitive and reliable system to thoroughly evaluate neuromuscular function, as well as efficiency and safety of innovative therapies targeting these NMDs. This review also contextualizes the model by highlighting its unique genetic value, shaped by the long-term coevolution of humans and domesticated dogs. Because the dog is one of the most protected research animal models, there is considerable opposition to include it in preclinical projects, posing a threat to the use of this model. We thus discuss ethical issues, emphasizing that unlike many other models, the dog also benefits from its contribution to comparative biomedical research with a drastic reduction in the prevalence of morbid alleles in the breeding stock and an improvement in medical care.


Assuntos
Miopatias Congênitas Estruturais/genética , Miopatias Congênitas Estruturais/terapia , Proteínas Tirosina Fosfatases não Receptoras/genética , Animais , Modelos Animais de Doenças , Cães , Humanos , Estudos Longitudinais , Mutação/genética , Miopatias Congênitas Estruturais/diagnóstico , Doenças Raras/genética , Doenças Raras/terapia
11.
Genes (Basel) ; 10(6)2019 06 23.
Artigo em Inglês | MEDLINE | ID: mdl-31234577

RESUMO

Mucosal melanomas (MM) are rare aggressive cancers in humans, and one of the most common forms of oral cancers in dogs. Similar biological and histological features are shared between MM in both species, making dogs a powerful model for comparative oncology studies of melanomas. Although exome sequencing recently identified recurrent coding mutations in canine MM, little is known about changes in non-coding gene expression, and more particularly, in canine long non-coding RNAs (lncRNAs), which are commonly dysregulated in human cancers. Here, we sampled a large cohort (n = 52) of canine normal/tumor oral MM from three predisposed breeds (poodles, Labrador retrievers, and golden retrievers), and used deep transcriptome sequencing to identify more than 400 differentially expressed (DE) lncRNAs. We further prioritized candidate lncRNAs by comparative genomic analysis to pinpoint 26 dog-human conserved DE lncRNAs, including SOX21-AS, ZEB2-AS, and CASC15 lncRNAs. Using unsupervised co-expression network analysis with coding genes, we inferred the potential functions of the DE lncRNAs, suggesting associations with cancer-related genes, cell cycle, and carbohydrate metabolism Gene Ontology (GO) terms. Finally, we exploited our multi-breed design to identify DE lncRNAs within breeds. This study provides a unique transcriptomic resource for studying oral melanoma in dogs, and highlights lncRNAs that may potentially be diagnostic or therapeutic targets for human and veterinary medicine.


Assuntos
Doenças do Cão/genética , Melanoma/genética , Neoplasias Bucais/genética , RNA Longo não Codificante/genética , Animais , Cruzamento , Doenças do Cão/patologia , Cães , Perfilação da Expressão Gênica , Genoma/genética , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Melanoma/patologia , Neoplasias Bucais/patologia , Transcriptoma/genética
12.
13.
Biol Lett ; 14(10)2018 10 17.
Artigo em Inglês | MEDLINE | ID: mdl-30333260

RESUMO

Near Eastern Neolithic farmers introduced several species of domestic plants and animals as they dispersed into Europe. Dogs were the only domestic species present in both Europe and the Near East prior to the Neolithic. Here, we assessed whether early Near Eastern dogs possessed a unique mitochondrial lineage that differentiated them from Mesolithic European populations. We then analysed mitochondrial DNA sequences from 99 ancient European and Near Eastern dogs spanning the Upper Palaeolithic to the Bronze Age to assess if incoming farmers brought Near Eastern dogs with them, or instead primarily adopted indigenous European dogs after they arrived. Our results show that European pre-Neolithic dogs all possessed the mitochondrial haplogroup C, and that the Neolithic and Post-Neolithic dogs associated with farmers from Southeastern Europe mainly possessed haplogroup D. Thus, the appearance of haplogroup D most probably resulted from the dissemination of dogs from the Near East into Europe. In Western and Northern Europe, the turnover is incomplete and haplogroup C persists well into the Chalcolithic at least. These results suggest that dogs were an integral component of the Neolithic farming package and a mitochondrial lineage associated with the Near East was introduced into Europe alongside pigs, cows, sheep and goats. It got diluted into the native dog population when reaching the Western and Northern margins of Europe.


Assuntos
Arqueologia , DNA Mitocondrial , Cães/genética , Agricultura , Animais , Cães/classificação , Europa (Continente) , Fósseis , Haplótipos , Humanos , Análise de Sequência de DNA
14.
Sci Rep ; 8(1): 13444, 2018 09 07.
Artigo em Inglês | MEDLINE | ID: mdl-30194329

RESUMO

Long non-coding RNAs (lncRNAs) are a family of heterogeneous RNAs that play major roles in multiple biological processes. We recently identified an extended repertoire of more than 10,000 lncRNAs of the domestic dog however, predicting their biological functionality remains challenging. In this study, we have characterised the expression profiles of 10,444 canine lncRNAs in 26 distinct tissue types, representing various anatomical systems. We showed that lncRNA expressions are mainly clustered by tissue type and we highlighted that 44% of canine lncRNAs are expressed in a tissue-specific manner. We further demonstrated that tissue-specificity correlates with specific families of canine transposable elements. In addition, we identified more than 900 conserved dog-human lncRNAs for which we show their overall reproducible expression patterns between dog and human through comparative transcriptomics. Finally, co-expression analyses of lncRNA and neighbouring protein-coding genes identified more than 3,400 canine lncRNAs, suggesting that functional roles of these lncRNAs act as regulatory elements. Altogether, this genomic and transcriptomic integrative study of lncRNAs constitutes a major resource to investigate genotype to phenotype relationships and biomedical research in the dog species.


Assuntos
Bases de Dados de Ácidos Nucleicos , Regulação da Expressão Gênica/fisiologia , RNA Longo não Codificante/biossíntese , Transcriptoma , Animais , Cães , Humanos , Especificidade de Órgãos , RNA Longo não Codificante/genética
15.
Sci Rep ; 7(1): 15680, 2017 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-29142306

RESUMO

Genome-wide association studies (GWAS) are widely used to identify loci associated with phenotypic traits in the domestic dog that has emerged as a model for Mendelian and complex traits. However, a disadvantage of GWAS is that it always requires subsequent fine-mapping or sequencing to pinpoint causal mutations. Here, we performed whole exome sequencing (WES) and canine high-density (cHD) SNP genotyping of 28 dogs from 3 breeds to compare the SNP and linkage disequilibrium characteristics together with the power and mapping precision of exome-guided GWAS (EG-GWAS) versus cHD-based GWAS. Using simulated phenotypes, we showed that EG-GWAS has a higher power than cHD to detect associations within target regions and less power outside target regions, with power being influenced further by sample size and SNP density. We analyzed two real phenotypes (hair length and furnishing), that are fixed in certain breeds to characterize mapping precision of the known causal mutations. EG-GWAS identified the associated exonic and 3'UTR variants within the FGF5 and RSPO2 genes, respectively, with only a few samples per breed. In conclusion, we demonstrated that EG-GWAS can identify loci associated with Mendelian phenotypes both within and across breeds.


Assuntos
Cruzamento , Sequenciamento do Exoma , Estudo de Associação Genômica Ampla/estatística & dados numéricos , Locos de Características Quantitativas/genética , Animais , Mapeamento Cromossômico , Cães , Exoma/genética , Genótipo , Polimorfismo de Nucleotídeo Único/genética
16.
Cancer Res ; 77(21): 5721-5727, 2017 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-28883003

RESUMO

Canine cancers represent a tremendous natural resource due to their incidence and striking similarities to human cancers, sharing similar clinical and pathologic features as well as oncogenic events, including identical somatic mutations. Considering the importance of gene fusions as driver alterations, we explored their relevance in canine cancers. We focused on three distinct human-comparable canine cancers representing different tissues and embryonic origins. Through RNA-Seq, we discovered similar gene fusions as those found in their human counterparts: IGK-CCND3 in B-cell lymphoma, MPB-BRAF in glioma, and COL3A1-PDGFB in dermatofibrosarcoma protuberans-like. We showed not only similar partner genes but also identical breakpoints leading to oncogene overexpression. This study demonstrates similar gene fusion partners and mechanisms in human-dog corresponding tumors and allows for selection of targeted therapies in preclinical and clinical trials with pet dogs prior to human trials, within the framework of personalized medicine. Cancer Res; 77(21); 5721-7. ©2017 AACR.


Assuntos
Doenças do Cão/genética , Neoplasias/genética , Neoplasias/veterinária , Proteínas de Fusão Oncogênica/genética , Animais , Sequência de Bases , Western Blotting , Pontos de Quebra do Cromossomo , Doenças do Cão/metabolismo , Cães , Regulação Neoplásica da Expressão Gênica , Glioma/genética , Glioma/metabolismo , Glioma/veterinária , Humanos , Linfoma de Células B/genética , Linfoma de Células B/metabolismo , Linfoma de Células B/veterinária , Neoplasias/metabolismo , Fusão Oncogênica , Proteínas de Fusão Oncogênica/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Translocação Genética
17.
Nucleic Acids Res ; 45(8): e57, 2017 05 05.
Artigo em Inglês | MEDLINE | ID: mdl-28053114

RESUMO

Whole transcriptome sequencing (RNA-seq) has become a standard for cataloguing and monitoring RNA populations. One of the main bottlenecks, however, is to correctly identify the different classes of RNAs among the plethora of reconstructed transcripts, particularly those that will be translated (mRNAs) from the class of long non-coding RNAs (lncRNAs). Here, we present FEELnc (FlExible Extraction of LncRNAs), an alignment-free program that accurately annotates lncRNAs based on a Random Forest model trained with general features such as multi k-mer frequencies and relaxed open reading frames. Benchmarking versus five state-of-the-art tools shows that FEELnc achieves similar or better classification performance on GENCODE and NONCODE data sets. The program also provides specific modules that enable the user to fine-tune classification accuracy, to formalize the annotation of lncRNA classes and to identify lncRNAs even in the absence of a training set of non-coding RNAs. We used FEELnc on a real data set comprising 20 canine RNA-seq samples produced by the European LUPA consortium to substantially expand the canine genome annotation to include 10 374 novel lncRNAs and 58 640 mRNA transcripts. FEELnc moves beyond conventional coding potential classifiers by providing a standardized and complete solution for annotating lncRNAs and is freely available at https://github.com/tderrien/FEELnc.


Assuntos
Genoma , Anotação de Sequência Molecular/métodos , RNA Longo não Codificante/genética , Software , Transcriptoma , Animais , Benchmarking , Árvores de Decisões , Cães , Regulação da Expressão Gênica , Humanos , Camundongos , Anotação de Sequência Molecular/estatística & dados numéricos , Fases de Leitura Aberta , RNA Longo não Codificante/classificação , RNA Longo não Codificante/metabolismo , RNA Mensageiro/classificação , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Análise de Sequência de RNA
18.
Methods Mol Biol ; 1468: 201-19, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-27662878

RESUMO

The development of High Throughput Sequencing (HTS) for RNA profiling (RNA-seq) has shed light on the diversity of transcriptomes. While RNA-seq is becoming a de facto standard for monitoring the population of expressed transcripts in a given condition at a specific time, processing the huge amount of data it generates requires dedicated bioinformatics programs. Here, we describe a standard bioinformatics protocol using state-of-the-art tools, the STAR mapper to align reads onto a reference genome, Cufflinks to reconstruct the transcriptome, and RSEM to quantify expression levels of genes and transcripts. We present the workflow using human transcriptome sequencing data from two biological replicates of the K562 cell line produced as part of the ENCODE3 project.


Assuntos
Biologia Computacional/métodos , Perfilação da Expressão Gênica/métodos , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Células K562 , Análise de Sequência de RNA , Fluxo de Trabalho
19.
New Phytol ; 214(1): 219-232, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-27870061

RESUMO

The genome of the filamentous brown alga Ectocarpus was the first to be completely sequenced from within the brown algal group and has served as a key reference genome both for this lineage and for the stramenopiles. We present a complete structural and functional reannotation of the Ectocarpus genome. The large-scale assembly of the Ectocarpus genome was significantly improved and genome-wide gene re-annotation using extensive RNA-seq data improved the structure of 11 108 existing protein-coding genes and added 2030 new loci. A genome-wide analysis of splicing isoforms identified an average of 1.6 transcripts per locus. A large number of previously undescribed noncoding genes were identified and annotated, including 717 loci that produce long noncoding RNAs. Conservation of lncRNAs between Ectocarpus and another brown alga, the kelp Saccharina japonica, suggests that at least a proportion of these loci serve a function. Finally, a large collection of single nucleotide polymorphism-based markers was developed for genetic analyses. These resources are available through an updated and improved genome database. This study significantly improves the utility of the Ectocarpus genome as a high-quality reference for the study of many important aspects of brown algal biology and as a reference for genomic analyses across the stramenopiles.


Assuntos
DNA Intergênico/genética , Loci Gênicos , Genoma , Modelos Biológicos , Anotação de Sequência Molecular , Phaeophyceae/genética , Proteínas de Algas/genética , Proteínas de Algas/metabolismo , Processamento Alternativo/genética , Cromossomos de Plantas/genética , Sequência Conservada/genética , Bases de Dados Genéticas , Genoma Viral , RNA Longo não Codificante/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...