Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sensors (Basel) ; 22(6)2022 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-35336488

RESUMO

Access to and extensive use of fluorometric analyses is limited, despite its extensive utility in environmental transport and fate. Wide-spread application of fluorescent tracers has been limited by the prohibitive costs of research-grade equipment and logistical constraints of sampling, due to the need for high spatial resolutions and access to remote locations over long timescales. Recently, low-cost alternatives to research-grade equipment have been found to produce comparable data at a small fraction of the price for commercial equipment. Here, we prototyped and benchmarked performance of a variety of fluorometer components against commercial units, including performance as a function of tracer concentration, turbidity, and temperature, all of which are known to impact fluorometer performance. While component performance was found to be comparable to the commercial units tested, the best configuration tested obtained a functional resolution of 0.1 ppb, a working concentration range of 0.1 to >300 ppb, and a cost of USD 59.13.


Assuntos
Benchmarking , Fluorometria , Temperatura
2.
Environ Sci Process Impacts ; 19(7): 891-900, 2017 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-28561092

RESUMO

The lampricides 3-trifluoromethyl-4-nitrophenol (TFM) and 2',5-dichloro-4'-nitrosalicylanilide (niclosamide) are added to Great Lakes tributaries to target the sea lamprey, an invasive parasitic fish. This study examines the photochemical behavior of the lampricides in Carpenter Creek, Sullivan Creek, and the Manistique River. The observed loss of TFM in Carpenter and Sullivan Creeks (i.e., 34 and 19%) was similar to the loss of bromide in parallel time of passage studies (i.e., 30 and 29%), demonstrating that TFM photodegradation was minimal in both tributaries during the lampricide application. Furthermore, the absence of inorganic and organic photoproducts in the Manistique River demonstrates that TFM and niclosamide photodegradation was minimal in this large tributary, despite its long residence time (i.e., 3.3 days). Kinetic modeling was used to identify environmental variables primarily responsible for the limited photodegradation of TFM in the field compared to estimates from laboratory data. This analysis demonstrates that the lack of TFM photodegradation was attributable to the short residence times in Carpenter and Sullivan Creeks, while depth, time of year, time of day, and cloud cover influenced photochemical fate in the Manistique River. The modeling approach was extended to assess how many of the 140 United States tributaries treated with lampricides in 2015 and 2016 were amenable to TFM photolysis. While >50% removal of TFM due to photolysis could occur in 13 long and shallow tributaries, in most systems lampricides will reach the Great Lakes untransformed.


Assuntos
Niclosamida/análise , Nitrofenóis/análise , Petromyzon/crescimento & desenvolvimento , Fotólise , Rios/química , Poluentes Químicos da Água/análise , Animais , Monitoramento Ambiental , Great Lakes Region , Espécies Introduzidas , Cinética , Niclosamida/efeitos da radiação , Nitrofenóis/efeitos da radiação , Poluentes Químicos da Água/efeitos da radiação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...