Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 92
Filtrar
1.
Pathol Res Pract ; 260: 155422, 2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-38981347

RESUMO

Mesenchymal stem/stromal cells (MSCs) are acknowledged for their remarkable ability to undergo differentiation into various cell types. In addition, they exhibit anti-tumor characteristics, prompting endeavors to modify MSCs for employment in cancer therapies. On the contrary, it is imperative to recognize that MSCs have been extensively linked to pathways that facilitate the advancement of tumors. Numerous research studies have sought to modify MSCs for clinical application; however, the outcomes have been ambiguous, potentially due to the heterogeneity of MSC populations. Furthermore, the conflicting roles of MSCs in suppressing and promoting tumor growth present a challenge to the appropriateness of their use in anti-cancer therapies. Currently, there exists a lack of comprehensive comprehension concerning the anti-tumor and pro-tumor characteristics of MSCs for gastric cancer (GC). This article discusses the influence of MSCs on GC, the underlying mechanisms, the origins of MSCs, and their effects. This review article also elucidates how MSCs exhibit dual characteristics of promoting and inhibiting tumor growth. Hence, it is of utmost importance that clinical inquiries aimed at utilizing MSCs as a therapeutic intervention for cancer consider the potentiality of MSCs to accelerate the progression of GC. It is crucial to exercise caution throughout the process of developing MSC-based cellular therapies to enhance their anti-cancer attributes while simultaneously eliminating their tumor-promoting impacts.

2.
J Reprod Immunol ; 165: 104283, 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38991487

RESUMO

Genital tract infections can cause a variety of harmful health outcomes, including endometritis, bacterial vaginosis, and pelvic inflammatory disease, in addition to infertility. Anaerobic bacteria, such as Gardnerella vaginalis, Megasphaera spp., and Atopobium vaginae, are more commonly identified in cases of bacterial vaginosis than lactobacilli. It is unknown how the microorganisms that cause pelvic inflammatory diseases and endometritis enter the uterus. Both prospective and retrospective research have connected pelvic inflammatory disorders, chronic endometritis, and bacterial vaginosis to infertility. Similar to bacterial vaginosis, endometritis-related infertility is probably caused by a variety of factors, such as inflammation, immune system recognition of sperm antigens, bacterial toxins, and a higher risk of STDs. Preconception care for symptomatic women may include diagnosing and treating pelvic inflammatory disease, chronic endometritis, and bacterial vaginosis before conception to optimize the results of both natural and assisted reproduction.

3.
Cell Biochem Funct ; 42(4): e4071, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38863255

RESUMO

Metformin (MET) is a preferred drug for the treatment of type 2 diabetes mellitus. Recent studies show that apart from its blood glucose-lowering effects, it also inhibits the development of various tumours, by inducing autophagy. Various studies have confirmed the inhibitory effects of MET on cancer cell lines' propagation, migration, and invasion. The objective of the study was to comprehensively review the potential of MET as an anticancer agent, particularly focusing on its ability to induce autophagy and inhibit the development and progression of various tumors. The study aimed to explore the inhibitory effects of MET on cancer cell proliferation, migration, and invasion, and its impact on key signaling pathways such as adenosine monophosphate-activated protein kinase (AMPK), mammalian target of rapamycin (mTOR), and PI3K. This review noted that MET exerts its anticancer effects by regulating key signalling pathways such as phosphoinositide 3-kinase (PI3K), LC3-I and LC3-II, Beclin-1, p53, and the autophagy-related gene (ATG), inhibiting the mTOR protein, downregulating the expression of p62/SQSTM1, and blockage of the cell cycle at the G0/G1. Moreover, MET can stimulate autophagy through pathways associated with the 5' AMPK, thereby inhibiting he development and progression of various human cancers, including hepatocellular carcinoma, prostate cancer, pancreatic cancer, osteosarcoma, myeloma, and non-small cell lung cancer. In summary, this detailed review provides a framework for further investigations that may appraise the autophagy-induced anticancer potential of MET and its repurposing for cancer treatment.


Assuntos
Proteínas Quinases Ativadas por AMP , Autofagia , Metformina , Neoplasias , Transdução de Sinais , Serina-Treonina Quinases TOR , Metformina/farmacologia , Humanos , Autofagia/efeitos dos fármacos , Serina-Treonina Quinases TOR/metabolismo , Transdução de Sinais/efeitos dos fármacos , Neoplasias/tratamento farmacológico , Neoplasias/metabolismo , Neoplasias/patologia , Proteínas Quinases Ativadas por AMP/metabolismo , Antineoplásicos/farmacologia , Antineoplásicos/química , Animais
4.
Cell Biochem Funct ; 42(4): e4055, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38856033

RESUMO

The heterogeneity of the solid tumor microenvironment (TME) impairs the therapeutic efficacy of standard therapies and also reduces the infiltration of antitumor immune cells, all of which lead to tumor progression and invasion. In addition, self-renewing cancer stem cells (CSCs) support tumor dormancy, drug resistance, and recurrence, all of which might pose challenges to the eradication of malignant tumor masses with current therapies. Natural forms of oncolytic viruses (OVs) or engineered OVs are known for their potential to directly target and kill tumor cells or indirectly eradicate tumor cells by involving antitumor immune responses, including enhancement of infiltrating antitumor immune cells, induction of immunogenic cell death, and reprogramming of cold TME to an immune-sensitive hot state. More importantly, OVs can target stemness factors that promote tumor progression, which subsequently enhances the efficacy of immunotherapies targeting solid tumors, particularly the CSC subpopulation. Herein, we describe the role of CSCs in tumor heterogeneity and resistance and then highlight the potential and remaining challenges of immunotherapies targeting CSCs. We then review the potential of OVs to improve tumor immunogenicity and target CSCs and finally summarize the challenges within the therapeutic application of OVs in preclinical and clinical trials.


Assuntos
Imunoterapia , Neoplasias , Células-Tronco Neoplásicas , Terapia Viral Oncolítica , Vírus Oncolíticos , Humanos , Células-Tronco Neoplásicas/imunologia , Vírus Oncolíticos/genética , Vírus Oncolíticos/imunologia , Neoplasias/terapia , Neoplasias/imunologia , Microambiente Tumoral/imunologia , Animais
5.
Cell Biochem Biophys ; 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38916791

RESUMO

Conventional cancer therapies can have significant adverse effects as they are not targeted to cancer cells and may damage healthy cells. Single-stranded oligonucleotides assembled in a particular architecture, known as aptamers, enable them to attach selectively to target areas. Usually, they are created by Systematic Evolution of Ligand by Exponential enrichment (SELEX), and they go through a rigorous pharmacological revision process to change their therapeutic half-life, affinity, and specificity. They could thus offer a viable substitute for antibodies in the targeted cancer treatment market. Although aptamers can be a better choice in some situations, antibodies are still appropriate for many other uses. The technique of delivering aptamers is simple and reasonable, and the time needed to manufacture them is relatively brief. Aptamers do not require animals or an immune response to be produced, in contrast to antibodies. When used as a medication, aptamers can directly suppress tumor cells. As an alternative, they can be included in systems for targeted drug delivery that administer medications specifically to tumor cells while reducing toxicity to healthy cells. The most recent and cutting-edge methods for treating gastrointestinal (GI) tract cancer with aptamers will be covered in this review, with a focus on targeted therapy as a means of conquering resistance to traditional medicines.

6.
Med Oncol ; 41(7): 171, 2024 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-38849654

RESUMO

Transcripts longer than 200 nucleotides that are not translated into proteins are known as long non-coding RNAs, or lncRNAs. Now, they are becoming more significant as important regulators of gene expression, and as a result, of many biological processes in both healthy and pathological circumstances, such as blood malignancies. Through controlling alternative splicing, transcription, and translation at the post-transcriptional level, lncRNAs have an impact on the expression of genes. In multiple myeloma (MM), the majority of lncRNAs is elevated and promotes the proliferation, adhesion, drug resistance and invasion of MM cells by blocking apoptosis and altering the tumor microenvironment (TME). To control mRNA splicing, stability, and translation, they either directly attach to the target mRNA or transfer RNA-binding proteins (RBPs). By expressing certain miRNA-binding sites that function as competitive endogenous RNAs (ceRNAs), most lncRNAs mimic the actions of miRNAs. Here, we highlight lncRNAs role in the MM pathogenesis with emphasize on their capacity to control the molecular mechanisms known as "hallmarks of cancer," which permit earlier tumor initiation and progression and malignant cell transformation.


Assuntos
Mieloma Múltiplo , RNA Longo não Codificante , Mieloma Múltiplo/genética , Mieloma Múltiplo/patologia , Humanos , RNA Longo não Codificante/genética , Regulação Neoplásica da Expressão Gênica , Microambiente Tumoral/genética
7.
Int Immunopharmacol ; 136: 112306, 2024 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-38833843

RESUMO

A unique population of cells known as cancer stem cells (CSCs) is essential to developing and spreading cancer. Cancer initiation, maintenance, and progression are all believed to be significantly impacted by the distinct characteristics these cells exhibit regarding self-renewal, proliferation, and differentiation. Transcriptional, post-transcriptional, and translational processes are the only steps of gene expression that lncRNAs can affect. As a result, these proteins participate in numerous biological processes, including the repair of DNA damage, inflammatory reactions, metabolic control, the survival of cells, intercellular communication, and the development and specialization of cells. Studies have indicated that lncRNAs are important for controlling the increase in the subset of CSCs contributing to cancer development. The knowledge that is currently available about lncRNAs and their critical role in maintaining the biological properties of CSCs is highlighted in this study.


Assuntos
Neoplasias , Células-Tronco Neoplásicas , RNA Longo não Codificante , Humanos , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Neoplasias/imunologia , Neoplasias/genética , Neoplasias/metabolismo , Células-Tronco Neoplásicas/imunologia , Células-Tronco Neoplásicas/metabolismo , Animais , Regulação Neoplásica da Expressão Gênica
8.
Int Immunopharmacol ; 137: 112486, 2024 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-38901239

RESUMO

The two primary forms of inflammatory disorders of the small intestine andcolon that make up inflammatory bowel disease (IBD) are ulcerative colitis (UC) and Crohn's disease (CD). While ulcerative colitis primarily affects the colon and the rectum, CD affects the small and large intestines, as well as the esophagus,mouth, anus, andstomach. Although the etiology of IBD is not completely clear, and there are many unknowns about it, the development, progression, and recurrence of IBD are significantly influenced by the activity of immune system cells, particularly lymphocytes, given that the disease is primarily caused by the immune system stimulation and activation against gastrointestinal (GI) tract components due to the inflammation caused by environmental factors such as viral or bacterial infections, etc. in genetically predisposed individuals. Maintaining homeostasis and the integrity of the mucosal barrier are critical in stopping the development of IBD. Specific immune system cells and the quantity of secretory mucus and microbiome are vital in maintaining this stability. Th22 cells are helper T lymphocyte subtypes that are particularly important for maintaining the integrity and equilibrium of the mucosal barrier. This review discusses the most recent research on these cells' biology, function, and evolution and their involvement in IBD.


Assuntos
Doenças Inflamatórias Intestinais , Humanos , Animais , Doenças Inflamatórias Intestinais/imunologia , Linfócitos T Auxiliares-Indutores/imunologia , Mucosa Intestinal/imunologia , Mucosa Intestinal/microbiologia
9.
Cell Biochem Biophys ; 2024 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-38907940

RESUMO

Exosomes are the primary category of extracellular vesicles (EVs), which are lipid-bilayer vesicles with biological activity spontaneously secreted from either normal or tansformed cells. They serve a crucial role for intercellular communication and affect extracellular environment and the immune system. Tumor-derived exosomes (TEXs) enclose high levels of immunosuppressive proteins, including programmed death-ligand 1 (PD-L1). PD-L1 and its receptor PD-1 act as crucial immune checkpoint molecules, thus facilitating tumor advancement by inhibiting immune responses. PDL-1 is abundantly present on tumor cells and interacts with PD-1 on activated T cells, resulting in T cell suppression and allowing immune evasion of cancer cells. Various FDA-approved monoclonal antibodies inhibiting the PD-1/PD-L1 interaction are commonly used to treat a diverse range of tumors. Although the achieved results are significant, some individuals have a poor reaction to PD-1/PD-L1 blocking. PD-L1-enriched TEXs may mimic the impact of cell-surface PD-L1, consequently potentiating tumor resistance to PD1/PD-L1 based therapy. In light of this, a strong correlation between circulating exosomal PD-L1 levels and response rate to anti-PD-1/PD-L1 antibody treatment has been evinced. This article inspects the function of exosomal PDL-1 in developing resistance to anti-PD-1/PD-L1 therapy for opening new avenues for overcoming tumor resistance to such modalities and development of more favored combination therapy.

10.
Cell Biochem Biophys ; 2024 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-38884861

RESUMO

The first host defense systems are the innate immune response and the inflammatory response. Among innate immune cells, macrophages, are crucial because they preserve tissue homeostasis and eradicate infections by phagocytosis, or the ingestion of particles. Macrophages exhibit phenotypic variability contingent on their stimulation state and tissue environment and may be detected in several tissues. Meanwhile, critical inflammatory functions are played by macrophage scavenger receptors, in particular, SR-A1 (CD204) and SR-E3 (CD206), in a variety of pathophysiologic events. Such receptors, which are mainly found on the surface of multiple types of macrophages, have different effects on processes, including atherosclerosis, innate and adaptive immunity, liver and lung diseases, and, more recently, cancer. Although macrophage scavenger receptors have been demonstrated to be active across the disease spectrum, conflicting experimental findings and insufficient signaling pathways have hindered our comprehension of the molecular processes underlying its array of roles. Herein, as SR-A1 and SR-E3 functions are often binary, either protecting the host or impairing the pathophysiology of cancers has been reviewed. We will look into their function in malignancies, with an emphasis on their recently discovered function in macrophages and the possible therapeutic benefits of SR-A1 and SR-E3 targeting.

11.
Pharmacopsychiatry ; 2024 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-38897220

RESUMO

Currently, it has been stated that psychiatric and psychological problems are equally paramount aspects of the clinical modulation and manifestation of both the central nervous and digestive systems, which could be used to restore balance. The present narrative review aims to provide an elaborate description of the bio-psycho-social facets of refractory functional gastrointestinal disorders, psychiatrists' role, specific psychiatric approach, and the latest psychiatric and psychological perspectives on practical therapeutic management. In this respect, "psyche," "psychiatry," "psychology," "psychiatrist," "psychotropic," and "refractory functional gastrointestinal disorders" (as the keywords) were searched in relevant English publications from January 1, 1950, to March 1, 2024, in the PubMed, Web of Science, Scopus, EMBASE, Cochrane Library, and Google Scholar databases. Eventually, the narrative technique was adopted to reach a compelling story with a high level of cohesion through material synthesis. The current literature recognizes the brain-gut axis modulation as a therapeutic target for refractory functional gastrointestinal disorders and the bio-psycho-social model as an integrated framework to explain disease pathogenesis. The results also reveal some evidence to affirm the benefits of psychotropic medications and psychological therapies in refractory functional gastrointestinal disorders, even when psychiatric symptoms were absent. It seems that psychiatrists are required to pay higher levels of attention to both the assessment and treatment of patients with refractory functional gastrointestinal disorders, accompanied by educating and training practitioners who take care of these patients.

12.
Mol Biol Rep ; 51(1): 629, 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38717637

RESUMO

It has been rediscovered in the last fifteen years that B-cells play an active role in autoimmune etiology rather than just being spectators. The clinical success of B-cell depletion therapies (BCDTs) has contributed to this. BCDTs, including those that target CD20, CD19, and BAFF, were first developed to eradicate malignant B-cells. These days, they treat autoimmune conditions like multiple sclerosis and systemic lupus erythematosus. Particular surprises have resulted from the use of BCDTs in autoimmune diseases. For example, even in cases where BCDT is used to treat the condition, its effects on antibody-secreting plasma cells and antibody levels are restricted, even though these cells are regarded to play a detrimental pathogenic role in autoimmune diseases. In this Review, we provide an update on our knowledge of the biology of B-cells, examine the outcomes of clinical studies employing BCDT for autoimmune reasons, talk about potential explanations for the drug's mode of action, and make predictions about future approaches to targeting B-cells other than depletion.


Assuntos
Doenças Autoimunes , Linfócitos B , Depleção Linfocítica , Animais , Humanos , Antígenos CD19/imunologia , Antígenos CD20/imunologia , Doenças Autoimunes/imunologia , Doenças Autoimunes/terapia , Fator Ativador de Células B/imunologia , Linfócitos B/imunologia , Lúpus Eritematoso Sistêmico/imunologia , Lúpus Eritematoso Sistêmico/terapia , Depleção Linfocítica/métodos , Esclerose Múltipla/imunologia , Esclerose Múltipla/terapia
13.
Int J Biol Macromol ; 271(Pt 2): 132547, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38782322

RESUMO

Nanocatalysts play a vital role in chemical reactions, energy conservation, and pollution control. They significantly contribute to organic synthesis by using natural polymers as nanoparticle substrates in nanocatalysts. Natural hydrogels made from polysaccharide and/or protein sources may be used to accomplish this. Recent research has focused on using layered double-hydroxides (LDHs) in composites having catalytic properties. Magnetic features of the catalyst allow its extraction from the environment using a magnet after the reaction, improving product efficiency. This work developed a catalyst for producing physiologically relevant polyhydroquinoline derivatives using a novel magnetic nanocomposite containing natural cellulose-gellan gum hydrogel and MgAl LDH. The Cell-GG hydrogel/MgAl LDH/Fe3O4 nanocomposite showed over 90 % efficiency in one-pot production of polyhydroquinoline derivatives by asymmetric Hantzsch condensation. Dimedone, ammonium acetate, ethyl acetoacetate, and different substituted aldehydes were employed in successive processes to create polyhydroquinoline derivatives. High product efficiency, quick reaction time, room temperature functioning, and easy separation with a magnet suggest a potent catalyst. Interestingly, the catalyst retains 80 % of its original capability after four cycles. Additionally, the Cell-GG hydrogel/MgAl LDH/Fe3O4 nanocomposite was analyzed using several methods, including FT-IR, FE-SEM, EDX, XRD, VSM and TGA, to obtain insight into its chemical and physical characteristics.


Assuntos
Celulose , Hidrogéis , Polissacarídeos Bacterianos , Quinolinas , Polissacarídeos Bacterianos/química , Celulose/química , Catálise , Quinolinas/química , Hidrogéis/química , Hidrogéis/síntese química , Nanocompostos/química
14.
Tissue Cell ; 88: 102419, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38810349

RESUMO

One of the serious challenges in diabetic patients is the occurrence of complications caused by the disease. One of the most important side effects is wounding in limbs. Due to the multifactorial nature of these wounds, treatments require a multifaceted approach. Therefore, the aim of the present study was whether the human amniotic membrane (HAM) in combination with menstrual blood-derived stem cells (MenSCs) could promote wound healing in diabetic rats. Thirty days after induction of diabetes, the animals were randomly allocated into four equal groups (n=15): the control group, HAM group, MenSC group, and HAM+MenSC group. Sampling was done on days 7, 14, and 21 for histological, molecular, and tensiometrical evaluations. The results showed that the wound healing rate, collagen deposition, volumes of new epidermis and dermis, as well as tensiometrical characteristics were significantly increased in the treatment groups compared to the control group, and these changes were more obvious in the HAM+MenSC ones (P<0.05). Moreover, the expression levels of TGF-ß, bFGF, and VEGF genes were considerably increased in treatment groups compared to the control group and were greater in the HAM+MenSC group (P<0.05). This is while expression levels of TNF-α and IL-1ß decreased more significantly in the HAM+MenSC group than the other groups (P<0.05). We concluded that the combined use of HAM and MenSCs has a more significant effect on diabetic wound healing.


Assuntos
Âmnio , Diabetes Mellitus Experimental , Menstruação , Cicatrização , Animais , Âmnio/citologia , Diabetes Mellitus Experimental/patologia , Diabetes Mellitus Experimental/terapia , Humanos , Ratos , Feminino , Menstruação/sangue , Células-Tronco/metabolismo , Células-Tronco/citologia
15.
Mol Biol Rep ; 51(1): 615, 2024 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-38704760

RESUMO

A complex sequence of occurrences, including host genetic vulnerability, Helicobacter pylori infection, and other environmental variables, culminate in gastric cancer (GC). The development of several genetic and epigenetic changes in oncogenes and tumor suppressor genes causes dysregulation of several signaling pathways, which upsets the cell cycle and the equilibrium between cell division and apoptosis, leading to GC. Developments in computational biology and RNA-seq technology enable quick detection and characterization of long non-coding RNAs (lncRNAs). Recent studies have shown that long non-coding RNAs (lncRNAs) have multiple roles in the development of gastric cancer. These lncRNAs interact with molecules of protein, RNA, DNA, and/or combinations. This review article explores several gastric cancer-associated lncRNAs, such as ADAMTS9-AS2, UCA1, XBP-1, and LINC00152. These various lncRNAs could change GC cell apoptosis, migration, and invasion features in the tumor microenvironment. This review provides an overview of the most recent research on lncRNAs and GC cell apoptosis, migration, invasion, and drug resistance, focusing on studies conducted in cancer cells and healthy cells during differentiation.


Assuntos
Apoptose , Regulação Neoplásica da Expressão Gênica , MicroRNAs , RNA Longo não Codificante , Neoplasias Gástricas , Neoplasias Gástricas/genética , Neoplasias Gástricas/patologia , Humanos , RNA Longo não Codificante/genética , MicroRNAs/genética , Apoptose/genética , Microambiente Tumoral/genética , Movimento Celular/genética , Transdução de Sinais/genética , Resistencia a Medicamentos Antineoplásicos/genética
16.
Heliyon ; 10(10): e31066, 2024 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-38784539

RESUMO

Background: Night shift duties are crucial in the ICU to ensure care continuity, where critically ill patients require round-the-clock care. However, cumulative night shift duties may disturb circadian rhythm, insomnia, fatigue, and depression, and require further elucidation. Objectives: This study aims to examine the negative consequences of various night shift patterns on insomnia, fatigue, and mental health of ICU Workers. Methods: A cross-sectional study examined how cumulative night shift duty affects insomnia, fatigue, and mental health in critical care providers (CCPs). Results: A total of 1006 participants completed this study between June 2022 and March 2023, including 54.5 % males. About 35 % were between 20 and 30 years of age, and Respiratory Therapists accounted for approximately 46.5 % of the entire sample. Most of our respondents (476; 47 %) reported working night shifts, with a monthly range of 8-15 nights. The prevalence rates for moderate to severe clinical insomnia, fatigue, and moderate to severe depression were 42 %, 48 %, and 32 %, respectively. CCPs working 8-15 nights had a 2-fold risk of clinical insomnia than those working fewer than eight nights with (AOR) and 95 % (CI) of 2.12 and 1.41-3.20, while those working ≥16 nights per month had a greater incidence of clinical insomnia compared to those working <8 nights per month, AOR (CI): 3.09 (1.90-5.03). Only those working ≥16-night shifts per month had a substantially higher fatigue risk compared to those working < 8-night shifts per month, with an AOR (CI) of 1.92 (1.19-3.08). Working 8-15-night shifts per month increases depression risks by 34 % compared to the <8-night shifts group, AOR (CI): 1.34 (0.87-2.08). Those working ≥16-night shifts per month showed a higher depression risk than those working <8-night shifts, AOR (CI): 2.53 (1.53-4.19). Conclusion: A cumulative night shift above eight nights per month is linked with an increased risk of insomnia, fatigue, and depression. The risk of these conditions was significantly directly proportional to the number of night shifts performed per month.

17.
Cell Biochem Biophys ; 2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38806965

RESUMO

The advancement of novel technologies, coupled with bioinformatics, has led to the discovery of additional genes, such as long noncoding RNAs (lncRNAs), that are associated with drug resistance. LncRNAs are composed of over 200 nucleotides and do not possess any protein coding function. These lncRNAs exhibit lower conservation across species, are typically expressed at low levels, and often display high specificity towards specific tissues and developmental stages. The LncRNA MALAT1 plays crucial regulatory roles in various aspects of genome function, encompassing gene transcription, splicing, and epigenetics. Additionally, it is involved in biological processes related to the cell cycle, cell differentiation, development, and pluripotency. Recently, MALAT1 has emerged as a novel mechanism contributing to drug resistance or sensitivity, attracting significant attention in the field of cancer research. This review aims to explore the mechanisms through which MALAT1 confers resistance to chemotherapy and radiotherapy in cancer cells.

18.
Cell Biochem Biophys ; 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38750383

RESUMO

The expression of the nuclear paraspeckle assembly transcript 1 (NEAT1), as a well-known long non-coding RNA (lncRNA), is often upregulated in varied types of cancers and associated with poor survival outcomes in patients suffering from tumors. NEAT1 promotes the tumors growth by influencing the various genes' expression profile that regulate various aspects of tumor cell behavior, in particular tumor growth, metastasis and drug resistance. This suggests that NEAT1 are capable of serving as a new diagnostic biomarker and target for therapeutic intervention. Through interrelation with enhancer of zeste homolog 2 (EZH2), NEAT1 acts as a scaffold RNA molecule, and thus regulating the expression EZH2-associated genes. Additionally, by perform as miRNA sponge, it constrains suppressing the interactions between miRNAs-mediated degradation of target mRNAs. In light of this, NEAT1 inhibition by small interfering RNA (siRNA) hampers tumorgenesis. We summarize recent findings about the expression, biological functions, and regulatory process of NEAT1 in human tumors. It specifically emphasizes the clinical significance of NEAT1 as a novel diagnostic biomarker and a promising therapeutic mark for many types of cancers.

19.
J Appl Genet ; 2024 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-38753266

RESUMO

The Homeobox (HOX) gene family is essential to regulating cellular processes because it maintains the exact coordination required for tissue homeostasis, cellular differentiation, and embryonic development. The most distinctive feature of this class of genes is the presence of the highly conserved DNA region known as the homeobox, which is essential for controlling their regulatory activities. Important players in the intricate process of genetic regulation are the HOX genes. Many diseases, especially in the area of cancer, are linked to their aberrant functioning. Due to their distinctive functions in biomedical research-particularly in the complex process of tumor advancement-HOXA9 and HOXB9 have drawn particular attention. HOXA9 and HOXB9 are more significant than what is usually connected with HOX genes since they have roles in the intricate field of cancer and beyond embryonic processes. The framework for a focused study of the different effects of HOXA9 and HOXB9 in the context of tumor biology is established in this study.

20.
Pathol Res Pract ; 257: 155288, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38653088

RESUMO

Tumor-mediated immunosuppression is a fundamental obstacle to the development of dendritic cell (DC)-based cancer vaccines, which despite their ability to stimulate host anti-tumor CD8 T cell immunity, have not been able to generate meaningful therapeutic responses. Exosomes are inactive membrane vesicles that are nanoscale in size and are produced by the endocytic pathway. They are essential for intercellular communication. Additionally, DC-derived exosomes (DEXs) contained MHC class I/II (MHCI/II), which is frequently complexed with antigens and co-stimulatory molecules and is therefore able to prime CD4 and CD8 T cells that are specific to particular antigens. Indeed, vaccines with DEXs have been shown to exhibit better anti-tumor efficacy in eradicating tumors compared to DC vaccines in pre-clinical models of digestive system tumors. Also, there is room for improvement in the tumor antigenic peptide (TAA) selection process. DCs release highly targeted exosomes when the right antigenic peptide is chosen, which could aid in the creation of DEX-based antitumor vaccines that elicit more targeted immune responses. Coupled with their resistance to tumor immunosuppression, DEXs-based cancer vaccines have been heralded as the superior alternative cell-free therapeutic vaccines over DC vaccines to treat digestive system tumors. In this review, current studies of DEXs cancer vaccines as well as potential future directions will be deliberated.


Assuntos
Vacinas Anticâncer , Células Dendríticas , Exossomos , Exossomos/imunologia , Humanos , Células Dendríticas/imunologia , Vacinas Anticâncer/uso terapêutico , Vacinas Anticâncer/imunologia , Neoplasias do Sistema Digestório/imunologia , Neoplasias do Sistema Digestório/terapia , Neoplasias do Sistema Digestório/patologia , Animais , Imunoterapia/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...