Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Inorg Chem ; 62(44): 18219-18227, 2023 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-37877669

RESUMO

The tetradentate tripodal ligand scaffold is capable of supporting the expected geometries of the copper ion during the oxygen reduction reaction (ORR) catalysis. As such, we probed the reactivity of copper complexes with these types of ligands by electronically and structurally tweaking the tris(pyridin 2-ylmethyl)amine (tmpa) scaffold by progressively replacing the terminal pyridines with carboxylate donors. This work shows that systems with one carboxylato donor (bpg = bis(pyridin-2-ylmethyl)glycine), (bpp = (3-(bis(pyridin-2-ylmethyl)amino)propanoic acid)) are active in electrocatalyzing the homogeneous ORR under circumneutral aqueous conditions. Turnover frequencies in the range from 105 to 106 s-1, on par with that for Cu-tmpa under identical conditions, were obtained. It is noteworthy that the CuII/CuI redox potentials for the Cu-bpg, Cu-bpp, and Cu-tmpa systems in phosphate-buffered water (pH 7, under Ar) are similar at -0.409, -0.375, and -0.401 V vs Ag/AgCl, respectively. This is rationalized by the influence of the Lewis acidity of the copper ions on the water coligand. Corroborating this are pKa values for [Cu(tmpa)(H2O)]2+, Cu(bpg)(H2O)]+, and [Cu(bpp)(H2O)]+ of 6.6, 8.8, and 10.2, respectively. Thus, the overall charge of the solution species for all three complexes will be +1 at pH 7 and this will be an important determinant for the redox potentials and, in turn, the catalytic overpotentials, which are also similar. A cis carboxylato donor offers H-bonding possibilities for exogenous resting state water and intermediate hydroperoxo coligands. This is reflected by the higher pKa values for Cu-bpp and Cu-bpg compared with that for Cu-tmpa, with the Cu-bpp system furnishing the least strained H-bonding.

2.
Chemphyschem ; 24(4): e202200779, 2023 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-36317641

RESUMO

Redox flow batteries based on organic electrolytes are promising energy storage devices, but stable long-term cycling is often difficult to achieve. Bipolar organic charge-storage materials allow the construction of symmetrical flow batteries (i. e., with identical electrolyte composition on both sides), which is a strategy to mitigate crossover-induced degradation. One such class of bipolar compounds are verdazyl radicals, but little is known on their stability/reactivity either as the neutral radical, or in the charged states. Here, we study the chemical properties of a Kuhn-type verdazyl radical (1) and the oxidized/reduced form (1+/- ). Chemical synthesis of the three redox-states provides spectroscopic characterization data, which are used as reference for evaluating the composition of the electrolyte solutions of an H-cell battery during/after cycling. Our data suggest that, rather than the charged states, the decomposition of the parent verdazyl radical is responsible for capacity fade. Kinetic experiments and DFT calculations provide insight in the decomposition mechanism, which is shown to occur by bimolecular disproportionation to form two closed-shell products (leuco-verdazyl 1H and triazole derivative 2).

3.
J Am Chem Soc ; 144(11): 5051-5058, 2022 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-35258956

RESUMO

Redox-active organic molecules are promising charge-storage materials for redox-flow batteries (RFBs), but material crossover between the posolyte and negolyte and chemical degradation are limiting factors in the performance of all-organic RFBs. We demonstrate that the bipolar electrochemistry of 1,2,4-benzotriazin-4-yl (Blatter) radicals allows the construction of batteries with symmetrical electrolyte composition. Cyclic voltammetry shows that these radicals also retain reversible bipolar electrochemistry in the presence of water. The redox potentials of derivatives with a C(3)-CF3 substituent are the least affected by water, and moreover, these compounds show >90% capacity retention after charge/discharge cycling in a static H-cell for 7 days (ca. 100 cycles). Testing these materials in a flow regime at a 0.1 M concentration of the active material confirmed the high cycling stability under conditions relevant for RFB operation and demonstrated that polarity inversion in a symmetrical flow battery may be used to rebalance the cell. Chemical synthesis provides insight in the nature of the charged species by spectroscopy and (for the oxidized state) X-ray crystallography. The stability of these compounds in all three states of charge highlights their potential for application in symmetrical organic redox-flow batteries.

4.
Molecules ; 26(8)2021 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-33921498

RESUMO

The aqueous redox flow battery is a promising technology for large-scale low cost energy storage. The rich possibilities for the tailoring of organic molecules and the possibility to discover active materials of lower cost and decreased environmental impact continue to drive research and development of organic compounds suitable for redox flow battery applications. In this work, we focus on the characterization of aromatic molecules with 1,4-diaza groups for flow battery applications. We examine the influence of electron-withdrawing and electron-donating substituents and the effect of the relative position of the substituent(s) on the molecule. We found that electron-withdrawing substituents increased the potential, while electron-donating decreased it, in agreement with expectations. The number of carboxy-groups on the pyrazinic ring was found to have a strong impact on the heterogeneous electron transfer kinetics, with the slowest kinetics observed for pyrazine-2,3,5,6-tetracarboxylic acid. The stability of quinoxaline was investigated by cyclic voltammetry and in a flow cell configuration. Substitution at the 2,3-positions in quinoxaline was found to decrease the capacity fade rate significantly. Furthermore, we demonstrated how molecular aggregation reduces the effective number of electrons involved in the redox process for quinoxalines. This translates to a significant reduction of the achievable volumetric capacity at higher concentrations, yielding values significantly lower than the theoretical capacity. Finally, we demonstrate that such capacity-limiting molecular aggregation may be reduced by introducing flexible side chains with bulky charged groups in order to increase electrostatic repulsion and steric hindrance.

5.
Nat Mater ; 14(5): 500-4, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25849531

RESUMO

Bismuth-oxide-based materials are the building blocks for modern ferroelectrics, multiferroics, gas sensors, light photocatalysts and fuel cells. Although the cubic fluorite δ-phase of bismuth oxide (δ-Bi2O3) exhibits the highest conductivity of known solid-state oxygen ion conductors, its instability prevents use at low temperature. Here we demonstrate the possibility of stabilizing δ-Bi2O3 using highly coherent interfaces of alternating layers of Er2O3-stabilized δ-Bi2O3 and Gd2O3-doped CeO2. Remarkably, an exceptionally high chemical stability in reducing conditions and redox cycles at high temperature, usually unattainable for Bi2O3-based materials, is achieved. Even more interestingly, at low oxygen partial pressure the layered material shows anomalous high conductivity, equal or superior to pure δ-Bi2O3 in air. This suggests a strategy to design and stabilize new materials that are comprised of intrinsically unstable but high-performing component materials.

6.
ACS Appl Mater Interfaces ; 7(7): 4039-47, 2015 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-25625507

RESUMO

Lithium-O2 (Li-O2) batteries are currently limited by a large charge overpotential at practically relevant current densities, and the origin of this overpotential has been heavily debated in the literature. This paper presents a series of electrochemical impedance measurements suggesting that the increase in charge potential is not caused by an increase in the internal resistance. It is proposed that the potential shift is instead dictated by a mixed potential of parasitic reactions and Li2O2 oxidation. The measurements also confirm that the rapid potential loss near the end of discharge ("sudden death") is explained by an increase in the charge transport resistance. The findings confirm that our theory and conclusions in ref 1, based on experiments on smooth small-area glassy carbon cathodes, are equally valid in real Li-O2 batteries with porous cathodes. The parameter variations performed in this paper are used to develop the understanding of the electrochemical impedance, which will be important for further improvement of the Li-air battery.

7.
J Chem Phys ; 140(12): 121101, 2014 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-24697413

RESUMO

The effects of Li2CO3 like species originating from reactions between CO2 and Li2O2 at the cathode of non-aqueous Li-air batteries were studied by density functional theory (DFT) and galvanostatic charge-discharge measurements. Adsorption energies of CO2 at various nucleation sites on a stepped (11̅00) Li2O2 surface were determined and even a low concentration of CO2 effectively blocks the step nucleation site and alters the Li2O2 shape due to Li2CO3 formation. Nudged elastic band calculations show that once CO2 is adsorbed on a step valley site, it is effectively unable to diffuse and impacts the Li2O2 growth mechanism, capacity, and overvoltages. The charging processes are strongly influenced by CO2 contamination, and exhibit increased overvoltages and increased capacity, as a result of poisoning of nucleation sites: this effect is predicted from DFT calculations and observed experimentally already at 1% CO2. Large capacity losses and overvoltages are seen at higher CO2 concentrations.

8.
J Am Chem Soc ; 130(39): 12850-1, 2008 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-18767847

RESUMO

In this contribution the polymerization of terthiophene, to form an alkene bridged alpha,alpha-coupled sexithiophene polymer, is controlled by light; i.e. the electropolymerizability of the monomer 1F is switched off and on with UV and visible light, respectively. The system comprises of both bis-terthiophene and photochromic dithienylethene units. The presence of a light-switchable unit allows on-off switching of the electropolymerization of the monomer with light. Furthermore the incorporation of the dithienylethene in the polymer backbone increases dramatically the homogenity of the polymer formed (i.e., only sexithiophene units are formed). The derived films are robust and fully retain electrochromic behavior as has been demonstrated through cyclic voltammetry while spatial control (patterning) is readily achieved by applying simple optical masking techniques.

9.
Langmuir ; 24(12): 6334-42, 2008 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-18481876

RESUMO

A bifunctional substituted dithienylcyclopentene photochromic switch bearing electropolymerisable methoxystyryl units, which enable immobilization of the photochromic unit on conducting substrates, is reported. The spectroscopic, electrochemical, and photochemical properties of a monomer in solution are compared with those of the polymer formed through oxidative electropolymerization. The electroactive polymer films prepared on gold, platinum, glassy carbon, and indium titanium oxide (ITO) electrodes were characterized by cyclic voltammetry, X-ray photoelectron spectroscopy (XPS), and atomic force microscopy (AFM). The thickness of the films formed is found to be limited to several monolayer equivalents. The photochromic properties and stability of the polymer films have been investigated by UV/vis spectroscopy, electrochemistry, and XPS. Although the films are electrochemically and photochemically stable, their mechanical stability with respect to adhesion to the electrode was found to be sensitive to both the solvent and the electrode material employed, with more apolar solvents, glassy carbon, and ITO electrodes providing good adhesion of the polymer film. The polymer film is formed consistently as a thin film and can be switched both optically and electrochemically between the open and closed state of the photochromic dithienylethene moiety.


Assuntos
Ciclopentanos/química , Eletroquímica/métodos , Fotoquímica/métodos , Polímeros/química , Técnicas Biossensoriais , Eletrodos , Índio/química , Cinética , Espectroscopia de Ressonância Magnética , Microscopia de Força Atômica , Modelos Químicos , Oxirredução , Solventes , Propriedades de Superfície , Titânio/química
10.
J Am Chem Soc ; 128(20): 6574-5, 2006 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-16704254

RESUMO

Molecular redox levels can be used to modulate tunneling currents through single or small numbers of molecules and induce molecular electronic device function. While most of these devices require cryogenic conditions, room temperature operation has been demonstrated by using electrochemical gating in aqueous environments. The latter have, however, serious shortcomings with a view on their relatively high volatility and narrow stability ranges in terms of potential. Here we report the first-time use of an ionic liquid, 1-butyl-3-methylimidazoliumhexafluorophosphate (BMI), as an electrochemical gate in a Scanning Tunneling Microscope (STM) configuration. Ionic liquids are known to have a very low vapor pressure, and accessible potential ranges are in principle large, up to 6 V. In a proof-of-principle experiment, we show how a heteroleptic redox-active Os bisterpyridine complex (Ossac) can be brought to exhibit both transistor and diode function in this novel environment at room temperature. This renders ionic liquids an attractive gating medium for configurations where back-gating is difficult to implement (e.g., break-junction techniques) or experimental conditions prohibit the use of aqueous or organic electrolyte media (vacuum or high temperatures). From an applied perspective, they represent a step toward solid-state molecular electronics with electrochemical gating.

11.
Inorg Chem ; 44(4): 1073-81, 2005 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-15859289

RESUMO

The electropolymerization of a series of Ru and Os bis-terpyridine complexes that form rodlike polymers with bithienyl, quaterthienyl, or hexathienyl bridges has been studied. Absorption spectroscopy, scanning electron microscopy, and cyclic voltammetry have been used to characterize the monomers and resulting polymer films. The absolute dc conductivity of the quaterthienyl-bridged {Ru(tpy)2} and {Os(tpy)2} polymers is unusually large and independent of the identity of the metal center at 1.6 x 10(-3) S cm(-1). The maximum conductivity occurs at the formal potential of each redox process, which typically is observed for systems where redox conduction is the dominant charge transport mechanism. Significantly, the dc conductivity of the metal-based redox couple observed in these polymers is 2 orders of magnitude higher thanthat of a comparable nonconjugated system.

12.
J Phys Chem B ; 109(27): 13205-9, 2005 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-16852646

RESUMO

The interaction between redox polymers, based on Ru- or Os-bis(2,2'-bipyridyl)-poly(4-vinylpyridine), and carbon nanotubes was investigated by spectroscopic and microscopic techniques. These metallopolymers were found to be excellent dispersants for nanotubes, as a result of a good wetting interaction between polymer and nanotubes. The results obtained show that well-coated individual nanotubes can be obtained. In addition, interactions between nanotubes and polymers did not significantly affect the electronic and electrochemical properties of the metallopolymers. On the basis of the electrochemical properties of the polymers this opens the possibility of adding functionality through interaction with nanotubes, either as redox active materials with enhanced mechanical properties or by using these modified nanotubes as nanosized electrochemical sensors.

13.
Dalton Trans ; (23): 3943-9, 2004 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-15558118

RESUMO

The synthesis and characterisation of [Ru(bipy)(2)(L1)](2+) and the homodinuclear complexes [M(bipy)(2)(L1)M(bipy)(2)](4+)(where M = Ru or Os), employing the ditopic ligand, 1,4-phenylene-bis(1-pyridin-2-ylimidazo[1,5-a]pyridine)(L1), are reported. The complexes are identified by elemental analysis, UV/Vis, emission, resonance Raman, transient resonance Raman and (1)H NMR spectroscopy, mass spectrometry and electrochemistry. The X-ray structure of the complex [Ru(bipy)(2)(L1)(bipy)(2)Ru](PF(6))(4) is also reported. DFT calculations, carried out to model the electronic properties of the compounds, are in good agreement with experiment. Minimal communication between the metal centres is observed. The low level of ground state electronic interaction is rationalized in terms of the poor ability of the phenyl spacer in facilitating superexchange interactions. Using the electronic and electrochemical data a detailed picture of the electronic properties of the RuRu compound is presented.

14.
Analyst ; 129(12): 1186-92, 2004 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-15565216

RESUMO

Mechanically attached, solid-state films of [Os(4,4'-diphenyl-2,2'-dipyridyl)2Cl2] have been formed on gold macro- and microelectrodes and their voltammetric properties investigated. The voltammetric response of these films associated with the Os(2+/3+) redox reaction is reminiscent of that observed for an ideal reversible, solution phase redox couple only when the contacting electrolyte contains of the order of 40% v/v of acetonitrile (ACN). The origin of this effect appears to involve preferential solvation of the redox centres by acetonitrile which facilitates the incorporation of charge compensating counterions. Scanning electron microscopy reveals that voltammetric cycling in 40:60 ACN-H2O containing 1.0 M LiClO4 as the electrolyte induces the formation of microcrystals. Voltammetry conducted under semi-infinite linear diffusion conditions has been used to determine the apparent diffusion coefficient, Dapp, for homogeneous charge transport through the deposit. The dynamics of charge transport decrease with increasing film thickness but appear to increase with increasing electrolyte concentration. These observations suggest that ion transport rather than the rate of electron self-exchange limit the overall rate of charge transport through these solids. When in contact with 40:60 ACN-H2O containing 1.0 M LiClO4 as electrolyte, Dapp values for oxidation and reduction are identical at 1.7 +/- 0.4 x 10(-12) cm2 s(-1). In the same electrolyte, the standard heterogeneous electron transfer rate constant, k(o), determined by fitting the full voltammogram using the Butler-Volmer formalism, is 8.3 +/- 0.5 x 10(-7) cm s(-1). The importance of these results for the rational design of solid state redox active materials for battery, display and sensor applications is considered.

15.
Chem Commun (Camb) ; (3): 284-5, 2002 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-12132483

RESUMO

A new rod-like coordination polymer consisting of (Ru-(terpy)2) motifs bridged by bithiophene units has been prepared by electrochemical polymerisation in acidic organic medium.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...