Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Toxicol Environ Health A ; 74(20): 1334-50, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21899407

RESUMO

Chlorpyrifos (CPF) is an organophosphorus insecticide, and neurotoxicity results from inhibition of acetylcholinesterase (AChE) by its metabolite, chlorpyrifos-oxon. Routine consumption of alcohol and tobacco modifies metabolic and physiological processes impacting the metabolism and pharmacokinetics of other xenobiotics, including pesticides. This study evaluated the influence of repeated ethanol and nicotine coexposure on in vivo CPF dosimetry and cholinesterase (ChE) response (ChE- includes AChE and/or butyrylcholinesterase (BuChE)). Hepatic microsomes were prepared from groups of naive, ethanol-only (1 g/kg/d, 7 d, po), and ethanol + nicotine (1 mg/kg/d 7 d, sc)-treated rats, and the in vitro metabolism of CPF was evaluated. For in vivo studies, rats were treated with saline or ethanol (1 g/kg/d, po) + nicotine (1 mg/kg/d, sc) in addition to CPF (1 or 5 mg/kg/d, po) for 7 d. The major CPF metabolite, 3,5,6-trichloro-2-pyridinol (TCPy), in blood and urine and the plasma ChE and brain acetylcholinesterase (AChE) activities were measured in rats. There were differences in pharmacokinetics, with higher TCPy peak concentrations and increased blood TCPy AUC in ethanol + nicotine groups compared to CPF only (approximately 1.8- and 3.8-fold at 1 and 5 mg CPF doses, respectively). Brain AChE activities after ethanol + nicotine treatments showed significantly less inhibition following repeated 5 mg CPF/kg dosing compared to CPF only (96 ± 13 and 66 ± 7% of naive at 4 h post last CPF dosing, respectively). Although brain AChE activity was minimal inhibited for the 1-mg CPF/kg/d groups, the ethanol + nicotine pretreatment resulted in a similar trend (i.e., slightly less inhibition). No marked differences were observed in plasma ChE activities due to the alcohol + nicotine treatments. In vitro, CPF metabolism was not markedly affected by repeated ethanol or both ethanol + nicotine exposures. Compared with a previous study of nicotine and CPF exposure, there were no apparent additional exacerbating effects due to ethanol coexposure.


Assuntos
Álcoois/toxicidade , Clorpirifos/toxicidade , Colinesterases/farmacocinética , Nicotina/toxicidade , Animais , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Clorpirifos/farmacocinética , Inibidores da Colinesterase/farmacocinética , Inibidores da Colinesterase/toxicidade , Colinesterases/sangue , Colinesterases/urina , Relação Dose-Resposta a Droga , Inseticidas/farmacocinética , Inseticidas/toxicidade , Masculino , Microssomos Hepáticos/efeitos dos fármacos , Microssomos Hepáticos/metabolismo , Ratos , Ratos Sprague-Dawley , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...