Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Ann Bot ; 112(1): 41-55, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23644362

RESUMO

BACKGROUND AND AIMS: Cytokinins are positive regulators of shoot development. However, it has previously been demonstrated that efficient activation of the cytokinin biosynthesis gene ipt can cause necrotic lesions and wilting in tobacco leaves. Some plant pathogens reportedly use their ability to produce cytokinins in disease development. In response to pathogen attacks, plants can trigger a hypersensitive response that rapidly kills cells near the infection site, depriving the pathogen of nutrients and preventing its spread. In this study, a diverse set of processes that link ipt activation to necrotic lesion formation were investigated in order to evaluate the potential of cytokinins as signals and/or mediators in plant defence against pathogens. METHODS: The binary pOp-ipt/LhGR system for dexamethasone-inducible ipt expression was used to increase endogenous cytokinin levels in transgenic tobacco. Changes in the levels of cytokinins and the stress hormones salicylic, jasmonic and abscisic acid following ipt activation were determined by ultra-performance liquid chromatography-electrospray tandem mass spectrometry (UPLC-MS/MS). Trends in hydrogen peroxide content and lipid peroxidation were monitored using the potassium iodide and malondialdehyde assays. The subcellular distribution of hydrogen peroxide was investigated using 3,3'-diaminobenzidine staining. The dynamics of transcripts related to photosynthesis and pathogen response were analysed by reverse transcription followed by quantitative PCR. The effects of cytokinins on photosynthesis were deciphered by analysing changes in chlorophyll fluorescence and leaf gas exchange. KEY RESULTS: Plants can produce sufficiently high levels of cytokinins to trigger fast cell death without any intervening chlorosis - a hallmark of the hypersensitive response. The results suggest that chloroplastic hydrogen peroxide orchestrates the molecular responses underpinning the hypersensitive-like response, including the inhibition of photosynthesis, elevated levels of stress hormones, oxidative membrane damage and stomatal closure. CONCLUSIONS: Necrotic lesion formation triggered by ipt activation closely resembles the hypersensitive response. Cytokinins may thus act as signals and/or mediators in plant defence against pathogen attack.


Assuntos
Citocininas/metabolismo , Interações Hospedeiro-Patógeno , Nicotiana/fisiologia , Folhas de Planta/fisiologia , Alquil e Aril Transferases/genética , Morte Celular , Clorofila/metabolismo , Cloroplastos/genética , Cloroplastos/metabolismo , Citocininas/genética , Dexametasona/farmacologia , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Inativação Gênica , Peróxido de Hidrogênio/metabolismo , Peroxidação de Lipídeos , Necrose/genética , Estresse Oxidativo/genética , Fotossíntese/genética , Reguladores de Crescimento de Plantas/genética , Reguladores de Crescimento de Plantas/metabolismo , Folhas de Planta/citologia , Folhas de Planta/genética , Estômatos de Plantas/fisiologia , Plantas Geneticamente Modificadas , Nicotiana/genética , Nicotiana/microbiologia
2.
Plant Physiol Biochem ; 54: 89-96, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-22391126

RESUMO

Burning the terminal leaflet of younger tomato (Lycopersicon esculentum Mill.) leaf caused local and systemic changes in the surface electrical potential (SEP) and gas exchange (GE) parameters. The local and systemic accumulation of endogenous abscisic acid (ABA) and jasmonic acid (JA) was measured 85 min after burning. The experiments were conducted with wild type (WT) plants, ABA-deficient mutant sitiens (SIT) and ABA pre-treated SIT plants (SITA). First changes in SEP were detected within 1.5 min after burning and were followed by a decrease in GE parameters within 3-6 min in WT, SIT and SITA plants. GE and SEP time courses of SIT were different and wave amplitudes of SEP of SIT were lower compared to WT and SITA. ABA content in WT and SITA control plants was similar and substantially higher compared to SIT, JA content was similar among WT, SIT and SITA. While changes in the ABA content in systemic leaves have not been recorded after burning, the systemic JA content was substantially increased in WT and more in SIT and SITA. The results suggest that ABA content governs the systemic reaction of GE and the SEP shape upon local burning. ABA, JA and SEP participate in triggering the GE reaction. The ABA shortage in the SIT in the reaction to burning is partly compensated by an enhanced JA accumulation. This JA compensation is maintained even in SIT endogenously supplied with ABA. A correlation between the systemic JA content and changes in GE parameters or SEP was not found.


Assuntos
Ácido Abscísico/genética , Aldeído Oxirredutases/genética , Ciclopentanos/metabolismo , Eletricidade , Incêndios , Oxilipinas/metabolismo , Fotossíntese/genética , Solanum lycopersicum/genética , Ácido Abscísico/metabolismo , Ácido Abscísico/farmacologia , Aldeído Oxirredutases/metabolismo , Genes de Plantas , Solanum lycopersicum/metabolismo , Mutação , Fotossíntese/fisiologia , Folhas de Planta/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Estresse Fisiológico/genética
3.
J Exp Bot ; 60(4): 1219-30, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-19213807

RESUMO

The spontaneous mutant 7B-1 in tomato (Solanum lycopersicum=Lycopersicon esculentum) is a photoperiod-dependent male-sterile mutant previously reported as resistant to various abiotic stresses specifically under blue light. Since this finding improved the potential of 7B-1's use in breeding programmes, its susceptibility to stress induced by coronatine (COR), the phytotoxine produced by several Pseudomonas syringae strains, was assessed in this study. The 7B-1 mutant was found to be less sensitive than the corresponding wild type (WT) to COR treatment in a blue light-dependent manner. Treatment of WT and 7B-1 plants with COR induced a strong accumulation of salicylic acid (SA), jasmonic acid (JA), and abscisic acid (ABA) in hypocotyls. Interestingly, accumulation of ABA and SA in the 7B-1 mutant was distinctly greater than in WT, especially in blue light. Based on the cross-talk between SA- and JA-signalling pathways, expression analysis of NPR1 and COI1 genes, respectively involved in these pathways, was investigated in COR-stressed plants. The blue light-specific lower sensitivity of 7B-1 plants to COR was found to be associated with blue light-specific overexpression of the NPR1 gene. These data suggest that the SA-dependent NPR1-dependent pathway could be involved in the lower sensitivity of the 7B-1 mutant to COR. The role of anthocyanins and ABA accumulation during the response to COR is also discussed in the present study.


Assuntos
Aminoácidos/farmacologia , Toxinas Bacterianas/farmacologia , Indenos/farmacologia , Luz , Mutação/genética , Pseudomonas syringae/fisiologia , Solanum lycopersicum/efeitos dos fármacos , Solanum lycopersicum/efeitos da radiação , Ácido Abscísico/metabolismo , Antocianinas/metabolismo , Ciclopentanos/metabolismo , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Regulação da Expressão Gênica de Plantas/efeitos da radiação , Solanum lycopersicum/genética , Solanum lycopersicum/crescimento & desenvolvimento , Modelos Biológicos , Oxilipinas/metabolismo , Doenças das Plantas/microbiologia , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/microbiologia , Folhas de Planta/efeitos da radiação , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa
4.
J Integr Plant Biol ; 50(10): 1292-9, 2008 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-19017116

RESUMO

Chloroplast movement has been studied in many plants mainly in relation to the local light, mechanical or stress effects. Here we investigated possible systemic responses of chloroplast movement to local light or burning stress in tobacco plants (Nicotiana tabacum cv. Samsun). Chloroplast movement was measured using two independent methods: one with a SPAD 502 Chlorophyll meter and another by collimated transmittance at a selected wavelength (676 nm). A sensitive periodic movement of chloroplasts was used in high or low (2 000 or 50 micromol/m(2) per s photosynthetically active radiation, respectively) cold white light with periods of 50 or 130 min. Measurements were carried out in the irradiated area, in the non-irradiated area of the same leaf or in the leaf located on the stem below the irradiated or burned one. No significant changes in systemic chloroplast movement in non-irradiated parts of the leaf and in the non-treated leaf were detected. Our data indicate that chloroplast movement in tobacco is dependent dominantly on the intensity and spectral composition of the incident light and on the local stimulation and state of the target tissue. No systemic signal was strong enough to evoke a detectable systemic response in chloroplast movement in distant untreated tissues of tobacco plants.


Assuntos
Cloroplastos/metabolismo , Cloroplastos/efeitos da radiação , Incêndios , Luz , Nicotiana/metabolismo , Nicotiana/efeitos da radiação , Folhas de Planta/metabolismo , Folhas de Planta/efeitos da radiação
5.
Plant Signal Behav ; 2(2): 103-5, 2007 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-19704749

RESUMO

A series of works have described an important role of chemical signaling compounds in generation of the stress response of plants in both the wounded and distant undamaged plant tissues. However, pure chemical signals are often not considered in the fast (minutes) long-distance signaling (systemic response) because of their slow propagation speed. Physical signals (electrical and hydraulic) or a combination of the physical and chemical signals (hydraulic dispersal of solutes) have been proposed as possible linkers of the local wound and the rapid systemic response. We have recently demonstrated an evidence for involvement of chemical compounds (jasmonic and abscisic acids) in the rapid (within 1 hour) inhibition of photosynthetic rate and stomata conductance in distant undamaged tobacco leaves after local burning. The aim of this addendum is to discuss plausible mechanisms of a rapid long-distance chemical signaling and the putative interactions between the physical and chemical signals leading to the fast systemic response.

6.
Planta ; 225(1): 235-44, 2006 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-16773374

RESUMO

Short-term (up to 1 h) systemic responses of tobacco (Nicotiana tabacum cv. Samsun) plants to local burning of an upper leaf were studied by measuring the following variables in a distant leaf: extracellular electrical potentials (EEPs); gas exchange parameters; fast chlorophyll fluorescence induction; and endogenous concentrations of three putative chemical signaling compounds-abscisic (ABA), jasmonic (JA), and salicylic (SA) acids. The first detected response to local burning in the distant leaves was in EEP, which started to decline within 10-20 s of the beginning of the treatment, fell sharply for ca. 1-3 min, and then tended to recover within the following hour. The measured gasometric parameters (stomatal conductance and the rates of transpiration and CO(2) assimilation) started to decrease 5-7 min after local burning, suggesting that the electrical signals may induce stomatal closure. These changes were accompanied by systemic increases in the endogenous ABA concentration followed by huge systemic rises in endogenous JA levels started after ca. 15 min, providing the first evidence of short-term systemic accumulation of these plant hormones in responses to local burning. Furthermore, JA appears to have an inhibitory effect on CO(2) assimilation. The correlations between the kinetics of the systemic EEP, stomatal, photosynthetic, ABA, and JA responses suggest that (1) electrical signals (probably induced by a propagating hydraulic signal) may trigger chemical defense-related signaling pathways in tobacco plants; (2) both electrical and chemical signals are interactively involved in the induction of short-term systemic stomatal closure and subsequent reductions in the rate of transpiration and CO(2) assimilation after local burning events.


Assuntos
Incêndios , Nicotiana/fisiologia , Fotossíntese/fisiologia , Folhas de Planta/fisiologia , Ácido Abscísico/metabolismo , Clorofila/metabolismo , Cromatografia Líquida de Alta Pressão , Ciclopentanos/metabolismo , Eletrofisiologia , Oxilipinas , Reguladores de Crescimento de Plantas/metabolismo , Folhas de Planta/metabolismo , Salicilatos/metabolismo , Nicotiana/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...