Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Autops Case Rep ; 12: e2021369, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35496737

RESUMO

Epidermoid cyst in an intrapancreatic accessory spleen is a rare benign lesion that is difficult to diagnose preoperatively. Cyst fluid analysis for biochemistry markers has been widely used to aid the diagnosis of pancreatic cysts. A high cyst fluid carcinoembryonic antigen (CEA) level (>800 ng/mL) is said to be useful in distinguishing intraductal papillary mucinous neoplasm (IPMN) and mucinous cystic neoplasm (MCN) from other non-mucinous cysts. We herein report a case of epidermoid cyst in an intrapancreatic accessory spleen with abnormally high CEA level (3582 ng/mL) in the cyst fluid, suggesting a potential pitfall in using cyst fluid CEA level as an indicator of mucinous neoplasms.

2.
Inorg Chem ; 61(10): 4384-4393, 2022 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-35243862

RESUMO

Three multi-dentate coordinated chelates LnH2 (n = 1, 2, and 3), comprising a linked 1-(pyridin-2-yl)ethylbenzene and one pyrazolyl pyridine unit and showing either tridentate or tetradentate coordination modes, are successfully designed and synthesized. Dinuclear Ir(III) complexes [Ir(κ4-Ln)(µ-Cl)]2 bearing tetradentate coordinated κ4-Ln chelate (2a, n = 1; 2b, n = 2; 2c, n = 3) were next obtained en route from the respective intermediate [Ir(κ3-LnH)Cl(µ-Cl)]2 bearing the tridentate coordinated κ3-LnH chelate (1a, n = 1; 1b, n = 2; 1c, n = 3). Next, mononuclear Ir(III) complexes Ir(κ4-Ln)(thd) (3a, n = 1; 3b, n = 2; 3c, n = 3) with the tetradentate chelate were obtained upon treatment of 2 with 2,2,6,6-tetramethyl-3,5-heptanedione (thd)H in the presence of K2CO3. Concurrently, methylation of 2c in the presence of MeI and nBu4NCl afforded tridentate Ir(κ3-L3HMe)Cl3 (4) and, next, can be converted to tetradentate Ir(κ4-L3Me)Cl2 (5) by further cyclometalation and HCl elimination in refluxing diethylene glycol monoethyl ether solution. The Ir(III) complexes 3a, 4, and 5 were unambiguously identified using spectroscopic methods, together with single-crystal X-ray structural analyses on Ir(III) derivatives 3a, 4, and 5. Their photophysical and ,electrochemical properties and device fabrication properties were also investigated and compared with results from theoretical studies.

3.
Chemistry ; 28(19): e202104575, 2022 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-35170133

RESUMO

Weak light absorption of common Ir(III) complexes (e. g., using phenylpyridine as the ligand) has hindered their applications in photocatalytic hydrogen generation from water as an efficient photosensitizer. To address this issue, a series of cyclometalated Ir(III) complexes (Ir1-Ir5), featuring different electron-donating substituents to enhance the absorptivity, have been synthesized and studied as photosensitizers (PSs) for light-driven hydrogen production from water. Ir6-Ir7 were prepared as fundamental systems for comparisons. Electron donors, including 9-phenylcarbazole, triphenylamine, 4,4'-dimethoxytriphenylamine, 4,4'-di(N-hexylcarbazole)triphenylamine moieties were introduced on 6-(thiophen-2-yl)phenanthridine-based cyclometalating (C^N) ligands to explore the donor effect on the hydrogen evolution performance of these cationic Ir(III) complexes. Remarkably, Ir4 with 4,4'-dimethoxytriphenylamine achieved the highest turn-over number (TON) of 12 300 and initial turnover frequency (TOFi ) of 394 h-1 , with initial activity (activityi ) of 547 000 µmol g-1 h-1 and initial apparent quantum yield (AQYi ) of 9.59 %, under the illumination of blue light-emitting diodes (LEDs) for 105 hours, which demonstrated a stable three-component photocatalytic system with high efficiency. The TON (based on n(H2 )/n(PSr)) in this study is the highest value reported to date among the similar photocatalytic systems using Ir(III) complexes with Pt nanoparticles as catalyst. The great potential of using triphenylamine-based Ir(III) PSs in boosting photocatalytic performance has also been shown.

4.
Environ Pollut ; 282: 117011, 2021 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-33823314

RESUMO

Ubiquitous human exposure to organophosphorus tri-esters (tri-OPEs) has been reported worldwide. Previous studies investigated the feasibility of using house dust and wristbands to assess human OPE exposure. We hypothesized that these two approaches could differ in relative effectiveness in the characterization of children and adult exposure. In the participants recruited from Guangzhou, South China, urinary levels of major OPE metabolites, including diphenyl phosphate (DPHP) and bis(butoxyethyl) phosphate (BBOEP), were significantly higher in children than their mothers (median 6.6 versus 3.7 ng/mL and 0.11 versus 0.06 ng/mL, respectively). The associations of dust or wristband-associated OPEs with urinary metabolites exhibited chemical-specific patterns, which also differed between children and mothers. Significant and marginally significant associations were determined between dust concentrations of triphenyl phosphate (TPHP), tris(2-butoxyethyl) phosphate (TBOEP), trimethylphenyl phosphate (TMPP), or tris(1-chloro-2-propyl) phosphate (TCIPP) and their metabolites in children urine and between dust tris(1,3-dichloroisopropyl) phosphate (TDCIPP), TPHP or TMPP and urinary metabolites in mothers. By contrast, wristbands exhibited better efficiency of predicting internal exposure to TDCIPP. While both house dust and wristbands exhibited the potential as a convenient approach for assessing long-term OPE exposure, their feasibility requires better investigations via larger-scale studies and standardized sampling protocols.


Assuntos
Poeira , Retardadores de Chama , Adulto , Criança , China , Poeira/análise , Exposição Ambiental , Monitoramento Ambiental , Ésteres/análise , Feminino , Retardadores de Chama/análise , Humanos , Mães , Organofosfatos/análise , Silicones
5.
Adv Mater ; 32(11): e1903269, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-32009268

RESUMO

White organic light-emitting diodes (WOLEDs) are superior to traditional incandescent light bulbs and compact fluorescent lamps in terms of their merits in ensuring pure white-light emission, low-energy consumption, large-area thin-film fabrication, etc. Unfortunately, WOLEDs based on multilayered or multicomponent (red, green, and blue (RGB)) emissive layers can suffer from some remarkable disadvantages, such as intricate device fabrication and voltage-dependent emission color, etc. Single molecules, which can emit white light, can be used to replace multiple emitters, leading to a simplified fabrication process, stable and reproducible WOLEDs. Recently, the performance of WOLEDs by using single molecules is catching up with that of the state-of-the-art devices fabricated by multicomponent emitters. Therefore, an increasing attention has been paid on single white-light-emitting materials for efficient WOLEDs. In this review, different mechanisms of white-light emission from a single molecule and the performance of single-molecule-based WOLEDs are collected and expounded, hoping to light up the interesting subject on single-molecule white-light-emitting materials, which have great potential as white-light emitters for illumination and lighting applications in the world.

6.
ChemSusChem ; 11(15): 2517-2528, 2018 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-29920985

RESUMO

Three molecular photosensitizers (PSs) with carboxylic acid anchors for attachment to platinized titanium dioxide nanoparticles were studied for light-driven hydrogen production from a fully aqueous medium with ascorbic acid (AA) as the sacrificial electron donor. Two zinc(II) porphyrin (ZnP)-based PSs were used to examine the effect of panchromatic sensitization on the photocatalytic H2 generation. A dyad molecular design was used to construct a difluoro boron-dipyrromethene (bodipy)-conjugated ZnP PS (ZnP-dyad), whereas the other one featured an electron-donating diarylamino moiety (YD2-o-C8). To probe the use of the ZnP scaffold in this particular energy conversion process, an organic PS without the ZnP moiety (Bodipy-dye) was also synthesized for comparison. Ultrafast transient absorption spectroscopy was adopted to map out the energy transfer processes occurring in the dyad and to establish the bodipy-based antenna effect. In particular, the systems with YD2-o-C8 and ZnP-dyad achieved a remarkable initial activity for the production of H2 with an initial turnover frequency (TOFi ) higher than 300 h-1 under white light irradiation. The use of ZnP PSs in dye-sensitized photocatalysis for the H2 evolution reaction in this study indicated the importance of the panchromatic sensitization capability for the development of light absorbing PSs.

7.
Chem Soc Rev ; 47(13): 4934-4953, 2018 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-29774340

RESUMO

In recent years, metallopolymers have attracted much attention as precursors to generate magnetic metal/metal alloy nanoparticles (NPs) through pyrolysis or photolysis because they offer the advantages of ease of solution processability, atomic level mixing and stoichiometric control over composition. The as-generated NPs usually possess narrow size distributions with precise control of composition and density per unit area. Moreover, patterned NPs can be achieved on various substrates in this way owing to the good film-forming property of metallopolymers and such work is important for many applications based on metal nanostructures. By combining the merits of both the solution processability of metallopolymers and nanoimprint lithography (NIL), a new platform can be created for fabricating bit-patterned media (BPM) and the next-generation of nanoscale ultra-high-density magnetic data storage devices. Furthermore, most of these metallopolymers can be used directly as a negative-tone resist to generate magnetic metallic nanostructures by electron-beam lithography and UV photolithography. Self-assembly and subsequent pyrolysis of metalloblock copolymers can also afford well-patterned magnetic metal or metal alloy NPs in situ with periodicity down to dozens of nanometers. In this review, we highlight the use of metallopolymer precursors for the synthesis of magnetic metal/metal alloy NPs and their nanostructures and the related applications.

8.
ACS Appl Mater Interfaces ; 9(46): 40497-40502, 2017 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-29090895

RESUMO

Five deep blue carbene-based iridium(III) phosphors were synthesized and characterized. Interestingly, one of them can be fabricated into deep blue, sky blue and white organic light-emitting diodes (OLEDs) through changing the host materials and exciton blocking layers. These deep and sky blue devices exhibit Commission Internationale de l'Éclairage (CIE) coordinates of (0.145, 0.186) and (0.152, 0.277) with external quantum efficiency (EQE) of 15.2% and 9.6%, respectively. The EQE of the deep blue device can be further improved up to 19.0% by choosing a host with suitable energy level of its lowest unoccupied molecular orbital (LUMO).

9.
Top Curr Chem (Cham) ; 375(5): 77, 2017 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-28819798

RESUMO

This review focuses on the recent development in the rigid-rod metallopolymers of late transition metals based on triple-bond building blocks. The synthesis, structure-property relationships and potential applications of organometallic poly(arylene ethynylene)s will be discussed in detail. These functional metal-based polymers can exhibit intriguing optical, electronic and magnetic properties. Considerable focus is placed on the design strategies towards tuning the optical bandgap and emission color (spanning almost the whole visible spectrum) of this class of metallopolymers, and the investigation of their use as active materials for light/electrical energy conversion and energy and information storage. The ongoing scientific challenges and future prospects of this research field are also highlighted.


Assuntos
Fontes de Energia Elétrica , Compostos Organometálicos/química , Polímeros/química , Elementos de Transição/química , Transferência de Energia , Estrutura Molecular , Compostos Organometálicos/síntese química , Relação Estrutura-Atividade
10.
Inorg Chem ; 56(17): 10311-10324, 2017 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-28825489

RESUMO

A new series of bimetallic Cu(I) complexes 1-5 triply bridged by a monoanionic or charge-neutral functionalized 3-(2'-pyridyl)-1,2,4-triazole in a µ-η1(N),η2(N,N) tridentate binding mode and two bis(diphenylphosphino)methane (dppm) ligands have been synthesized. Complexes 1-5 are singly or doubly charged dinuclear Cu(I) species with an eight-membered Cu2C2P4 ring of {Cu(µ-dppm)2Cu} unit, in which 3 and 4 adopt the boat-boat conformation, while 1, 2, and 5 display the chair-boat form. In these dimeric copper(I) complex cations, one of the two Cu(I) ions is four-coordinated, in a highly distorted N2P2 tetrahedral environment and the other is three-coordinated, in a distorted NP2 trigonal planar arrangement. All these Cu(I) complexes exhibit a comparatively weak low-energy absorption in CH2Cl2 solution, ascribed to the charge-transfer transitions with appreciable 1MLCT contribution, as suggested by time-dependent density functional theory (TDDFT) analyses. Complexes 1-5 display good emission properties in both solution and solid states at ambient temperature, which are well-modulated via structural modification of 3-(2'-pyridyl)-1,2,4-triazole, including the alteration of the substituent type (-CF3, -H, -CH3, and -C(CH3)3) and position (ortho-, meta-, and para-position). Furthermore, the variation of the substituent (-CF3 and -C(CH3)3) on the 5-site of the 1,2,4-triazolyl ring markedly influences the proton activity of the 1,2,4-triazolyl-NH, thus leading to the formation of both singly and doubly charged bimetallic Cu(I) species regulated by the NH ↔ N- conversion, resulting from NH deprotonation of the 1,2,4-triazolyl ring.

11.
Org Lett ; 19(5): 1048-1051, 2017 03 03.
Artigo em Inglês | MEDLINE | ID: mdl-28185454

RESUMO

Three metal-free molecular photosensitizers (S1-S3) featuring a starburst triarylamine donor moiety have been synthesized. They show attractive photocatalytic performance in visible light-driven H2 production from water in their platinized TiO2 composites. A remarkable H2 turnover number (TON) of 10 200 (48 h) was achieved in an S1-anchored system.

12.
Inorg Chem ; 56(5): 2409-2416, 2017 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-28195717

RESUMO

It is well-known that the variation of noncovalent interactions of luminophores, such as π-π interaction, metal-to-metal interaction, and hydrogen-bonding interaction, can regulate their emission colors. Electrostatic interaction is also an important noncovalent interaction. However, very few examples of luminescence color tuning induced by electrostatic interaction were reported. Herein, a series of Zn(II)-bis(terpyridine) complexes (Zn-AcO, Zn-BF4, Zn-ClO4, and Zn-PF6) containing different anionic counterions were reported, which exhibit counterion-dependent emission colors from green-yellow to orange-red (549 to 622 nm) in CH2Cl2 solution. More importantly, it was found that the excited states of these Zn(II) complexes can be regulated by changing the electrostatic interaction between Zn2+ and counterions. On the basis of this controllable excited state, white light emission has been achieved by a single molecule, and a white light-emitting device has been fabricated. Moreover, a novel type of data decryption system with Zn-PF6 as the optical recording medium has been developed by the two-photon excitation technique. Our results suggest that rationally controlled excited states of these Zn(II) complexes by regulating electrostatic interaction have promising applications in various optoelectronic fields, such as light-emitting devices, information recording, security protection, and so on.

13.
Nanoscale ; 9(2): 731-738, 2017 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-27959375

RESUMO

L10-ordered FePt nanoparticles (NPs) with ultra-high coercivity were directly prepared from a new metallopolyyne using a one-step pyrolysis method. The chemical ordering, morphology and magnetic properties of the as-synthesized FePt NPs have been studied. Magnetic measurements show the coercivity of these FePt NPs is as high as 3.6 T. Comparison of NPs synthesized under the Ar and Ar/H2 atmospheres shows that the presence of H2 in the annealing environment influences the nucleation and promotes the growth of L10-FePt NPs. Application of this metallopolymer for bit-patterned media was also demonstrated using nanoimprint lithography.

14.
Chem Asian J ; 12(3): 332-340, 2017 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-27897390

RESUMO

A new series of acetylene-bridged phenothiazine-based di-anchoring dyes have been synthesized, fully characterized, and used as the photoactive layer for the fabrication of conventional dye-sensitized solar cells (DSSCs). Tuning of their photophysical and electrochemical properties using different π-conjugated aromatic rings as the central bridges has been demonstrated. This molecular design strategy successfully inhibits the undesirable charge recombination and prolongs the electron lifetime significantly to improve the power conversion efficiency (η), which was proven by the detailed studies of electrochemical impedance spectroscopy (EIS) and open-circuit voltage decay (OCVD). Under a standard air mass (AM) 1.5 irradiation (100 mW cm-2 ), the DSSC based on the dye with phenyl bridging unit exhibits the highest η of 7.44 % with open-circuit photovoltage (Voc ) of 0.796 V, short-circuit photocurrent density (Jsc ) of 12.49 mA cm-2 and fill factor (ff) of 0.748. This η value is comparable to that of the benchmark N719 under the same conditions.

15.
Sci Rep ; 6: 39584, 2016 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-28000733

RESUMO

In recent years, 3D printing technologies have been extensively developed, enabling rapid prototyping from a conceptual design to an actual product. However, additive manufacturing of metals in the existing technologies is still cost-intensive and time-consuming. Herein a novel platform for low-cost additive manufacturing is introduced by simultaneously combining the laser-induced forward transfer (LIFT) method with photochemical reaction. Using acrylonitrile butadiene styrene (ABS) polymer as the sacrificial layer, sufficient ejection momentum can be generated in the LIFT method. A low-cost continuous wave (CW) laser diode at 405 nm was utilized and proved to be able to transfer the photochemically synthesized copper onto the target substrate. The wavelength-dependent photochemical behaviour in the LIFT method was verified and characterized by both theoretical and experimental studies compared to 1064 nm fiber laser. The conductivity of the synthesized copper patterns could be enhanced using post electroless plating while retaining the designed pattern shapes. Prototypes of electronic circuits were accordingly built and demonstrated for powering up LEDs. Apart from pristine PDMS materials with low surface energies, the proposed method can simultaneously perform laser-induced forward transfer and photochemical synthesis of metals, starting from their metal oxide forms, onto various target substrates such as polyimide, glass and thermoplastics.

16.
Chem Asian J ; 11(24): 3557-3567, 2016 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-27860355

RESUMO

A new building block ATVTA that uses stiff carbon-carbon triple bonds (A) on 1,2-di(2-thienyl)-ethene (TVT) has been developed. Oligothiophene derivatives S-01 with a TVT unit, S-02 with a 5,5'-diethynyl-2,2'-dithienyl (AT2) unit and S-03 with ATVTA were synthesized to compare their effects in a systematic study. Due to the better π-conjugation extension of the TVT unit, S-01 exhibits the most red-shifted absorption profile among them, whereas S-02 possesses the deepest HOMO level. While the HOMO level of S-03 is down-shifted by 0.02 eV relative to that of S-01, the alkyne linkages can effectively down-shift the HOMO level. By replacing the terminal units of S-03 with stronger electron acceptors, S-04 and S-05 exhibited broader absorption profiles and lower HOMO levels than those of S-03. Organic solar cells based on these molecules were fabricated and an S-03:PC60 BM (1:1, w/w) based device afforded the highest Voc value of 0.96 V and a power conversion efficiency (PCE) of 2.19 %.

17.
Sci Rep ; 6: 31188, 2016 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-27501761

RESUMO

3D printing using thermoplastics has become very popular in recent years, however, it is challenging to provide a metal coating on 3D objects without using specialized and expensive tools. Herein, a novel acrylic paint containing malachite for coating on 3D printed objects is introduced, which can be transformed to copper via one-step laser treatment. The malachite containing pigment can be used as a commercial acrylic paint, which can be brushed onto 3D printed objects. The material properties and photochemical transformation processes have been comprehensively studied. The underlying physics of the photochemical synthesis of copper was characterized using density functional theory calculations. After laser treatment, the surface coating of the 3D printed objects was transformed to copper, which was experimentally characterized by XRD. 3D printed prototypes, including model of the Statue of Liberty covered with a copper surface coating and a robotic hand with copper interconnections, are demonstrated using this painting method. This composite material can provide a novel solution for coating metals on 3D printed objects. The photochemical reduction analysis indicates that the copper rust in malachite form can be remotely and photo-chemically reduced to pure copper with sufficient photon energy.

18.
Top Curr Chem (Cham) ; 374(5): 64, 2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-27573506

RESUMO

This chapter focuses on the recent developments in luminescent metallopolymers. Synthetic routes to these polymers are briefly described and their applications in polymer white light-emitting diodes are discussed.


Assuntos
Metais/química , Polímeros/química , Dendrímeros/química , Corantes Fluorescentes/química , Irídio/química , Luminescência , Platina/química
19.
Chem Soc Rev ; 45(19): 5264-95, 2016 10 07.
Artigo em Inglês | MEDLINE | ID: mdl-27430525

RESUMO

Insertion of transition metal elements into organic polymeric scaffolds enables a nice coupling of the intriguing physical traits of metal complexes such as electronic, optical and magnetic properties with the solution processability of carbon-based macromolecules. The propensity of these metal-based polymers towards exhibiting metal-metal interactions can also provide additional means for manipulating the structural order and electronic coupling in the molecules. Among these metallopolymers, rigid-rod transition metal σ-acetylide polymers, or polymetallaynes in short, are of much current interest. These organometallic polymers are important functional materials showing unique characteristics including electrical semiconductivity, photo-/electroluminescence, non-linear optical properties, liquid crystallinity, chemosensing capability and photovoltaic effect. Recently, there has been an impressive progress of functional polymetallaynes consisting of a variety of conjugated organic bridging moieties and transition metals. In this review, we summarize the structure-property-function relationships of polymetallaynes of different transition metals, with a major focus on the effect of transition metals and the structural modification of ligands in activating their multifunctional properties. Different emerging applications can thus be realized, for example, as the converters for both light/electricity signals, sensor protectors against intense laser beam and patternable precursors to magnetic metal alloy nanoparticles for data storage, etc.

20.
Nanoscale ; 8(13): 7068-74, 2016 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-26961373

RESUMO

Ferromagnetic (L10 phase) CoPt alloy nanoparticles (NPs) with extremely high magnetocrystalline anisotropy are promising candidates for the next generation of ultrahigh-density data storage systems. It is a challenge to generate L10 CoPt NPs with high coercivity, controllable size, and a narrow size distribution. We report here the fabrication of L10 CoPt NPs by employing a heterobimetallic CoPt-containing polymer as a single-source precursor. The average size of the resulting L10 CoPt NPs is 3.4 nm with a reasonably narrow size standard deviation of 0.58 nm. The coercivity of L10 CoPt NPs is 0.54 T which is suitable for practical application. We also fabricated the L10 CoPt NP-based nanoline and nanodot arrays through nanoimprinting the polymer blend of CoPt-containing metallopolymer and polystyrene followed by pyrolysis. The successful transfer of the pre-defined patterns of the stamps onto the surface of the polymer blend implies that this material holds great application potential as a data storage medium.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...